Skip to main content
Log in

Revisited dynamic modeling and eigenvalue analysis of the cable-stayed beam

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, the Hamilton’s principle is applied to revisit the dynamic modeling of the cable-stayed beam, and the motion equations governing the nonlinear response of the cable-stayed beam are derived. The corresponding boundary terms are transformed to the dynamic equilibrium conditions through the continuity of the displacement at the anchoring point. Following the standard condensation procedure, the condensed model of the cable-stayed beam is determined. The eigenvalue analysis is performed to determine the closed-form eigenvalue solution of the linear problems, and two types of eigenvalue solution are obtained. It is shown that the frequency spectrum of the cable-stayed beam exhibits the curve veering and crossover phenomena. Corresponding to these phenomena, the mode shapes of the cable-stayed beam may exhibit the coupling characteristic. Finally, the discrete model of the cable-stayed beam is determined, and the possible nonlinear interactions are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rega, G.: Nonlinear vibrations of suspended cables. Part I: modeling and analysis. Appl. Mech. Rev 57, 443–478 (2004)

    Article  Google Scholar 

  2. Abdel-Ghaffar, A.M., Khalifa, M.A.: Importance of cable vibration in dynamics of cable-stayed bridge. J. Eng. Mech. 117, 2571–2589 (1991)

    Article  Google Scholar 

  3. Caetano, E., Cunha, A., Taylor, C.A.: Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge. Part I: modal analysis. Earthq. Eng. Struct. D 29, 481–498 (2000)

    Article  Google Scholar 

  4. Kang, H., Guo, T., Zhao, Y.: Review on nonlinear vibration and modeling of large span cable-stayed bridge. Chin. J. Theor. App. Mech. 48, 519–535 (2016). (In Chinese)

    Google Scholar 

  5. Sun, C., Zhao, Y., Peng, J., et al.: Multiple internal resonances and modal interaction processes of a cable-stayed bridge physical model subjected to an invariant single-excitation. Eng. Struct. 172, 938–955 (2018)

    Article  Google Scholar 

  6. Lilien, J.L., Pinto da Costa, A.: Vibration amplitudes caused by parametric excitation of cable stayed structure. J. Sound Vib. 174, 69–90 (1994)

    Article  Google Scholar 

  7. Wang, L., Zhao, Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 327, 121–133 (2009)

    Article  Google Scholar 

  8. Luongo, A., Zulli, D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlin. Dynam. 67, 71–87 (2012)

    Article  MathSciNet  Google Scholar 

  9. Warnitchai, P., Fujino, Y., Susumpow, T.: A non-linear dynamic model for cables and its application to a cable-structure system. J. Sound Vib. 187, 695–712 (1995)

    Article  Google Scholar 

  10. Fujino, Y., Warnitchai, P., Pacheco, B.M.: An experimental and analytical study of autoparametric resonance in a 3DOF model of cable-stayed beam. Nonlin. Dynam. 4, 111–138 (1993)

    Google Scholar 

  11. Gattulli, V., Morandini, M., Paolone, A.: A parametric analytical model for non-linear dynamics in cable-stayed beam. Earthq. Eng. Struct. D. 31, 1281–1300 (2002)

    Article  Google Scholar 

  12. Gattulli, V., Lepidi, M.: Nonlinear interactions in the planar dynamics of cable-stayed beam. Int. J. Solids Struct. 40, 4729–4748 (2003)

    Article  Google Scholar 

  13. Gattulli, V., Lepidi, M.: Localization and veering in the dynamics of cable-stayed bridges. Comput. Struct. 85, 1661–1678 (2007)

    Article  Google Scholar 

  14. Gimsing, N.J.: Cable Supported Bridges: Concept and Design, 2nd edn. Wiley, Chichester (1997)

    Google Scholar 

  15. Wang, Z., Sun, C., Zhao, Y., et al.: Modeling and nonlinear modal characteristics of the cable-stayed beam. Eur. J. Mech. A-Solid. 47, 58–69 (2014)

    Article  MathSciNet  Google Scholar 

  16. Luongo, A., Rega, G., Vestroni, F.: Planar nonlinear free vibrations of an elastic cable. Int. J. Nonlin. Mech. 9, 39–52 (1984)

    Article  Google Scholar 

  17. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  18. Wang, L., Zhang, X., Huang, S., et al.: Measured frequency for the estimation of cable force by vibration method. J. Eng. Mech. 141, 1–7 (2015)

    Google Scholar 

  19. Natsiavas, S.: Mode localization and frequency veering in a non-conservative mechanical system with dissimilar components. J. Sound Vib. 165, 137–147 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The study was supported by Natural Science Foundation of Hunan Province (Grant 2018JJ2029) and Scientific Research Fund of Hunan Provincial Education Department (Grant 19B192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianhua Wang.

Appendix

Appendix

The other coefficients in discrete model of the cable-stayed beam are:

$$\begin{aligned} \Gamma _{kijh}= & {} \frac{\alpha }{2}\int \limits ^1_0\phi ^c_{k}\phi ^c_{i,x_cx_c}\mathrm {d}x_c \int \limits ^1_0\phi ^c_{j,x_c}\phi ^c_{h,x_c}\mathrm {d}x_c\nonumber \\&+\frac{\Xi }{2m}\cos ^3\theta \int \limits ^1_0\phi ^b_k\phi ^b_{i,x_bx_b}\mathrm {d}x_b\int \limits ^1_0\phi ^b_{j,x_b}\phi ^b_{h,x_b} \mathrm {d} x_b\nonumber \\&-\frac{\alpha }{2}\cos ^2\theta \phi ^b_{k}(1)\phi ^c_{i,x_c}(1) \int \limits ^1_0\phi ^c_{j,x_c}\phi ^c_{h,x_c}\mathrm {d}x_c\nonumber \\&-\frac{\alpha \kappa }{2}\cos \theta \phi ^b_{k}(1) \phi ^b_{i,x_b}(1)\int \limits ^1_0\phi ^b_{j,x_b}\phi ^b_{h,x_b}\mathrm {d}x_b, \end{aligned}$$
(39)
$$\begin{aligned} \Upsilon _{kijh}= & {} \frac{\alpha }{2}\int \limits ^1_0\phi ^c_k\phi ^c_{i,x_cx_c}\mathrm {d}x_c \int \limits ^1_0\psi ^c_{j,x_c}\psi ^c_{h,x_c}\mathrm {d}x_c\nonumber \\&+\frac{\Xi }{2m}\cos ^3\theta \int \limits ^1_0\phi ^b_k\phi ^b_{i,x_bx_b}\mathrm {d}x_b \int \limits ^1_0\psi ^b_{j,x_b}\psi ^b_{h,x_b}{\mathrm {d}} x_b\nonumber \\&-\frac{\alpha }{2}\cos ^2\theta \phi ^b_{k}(1)\phi ^c_{i,x_c}(1) \int \limits ^1_0\psi ^c_{j,x_c}\psi ^c_{h,x_c}\mathrm {d}x_c\nonumber \\&-\frac{\alpha \kappa }{2}\cos \theta \phi ^b_{k}(1)\phi ^b_{i,x_b}(1) \int \limits ^1_0\psi ^b_{j,x_b}\psi ^b_{h,x_b}\mathrm {d}x_b, \end{aligned}$$
(40)
$$\begin{aligned} \Theta _{kijh}= & {} \frac{\alpha }{2}\int \limits ^1_0\psi ^c_k\psi ^c_{i,x_cx_c} \mathrm {d}x_c\int \limits ^1_0\psi ^c_{j,x_c}\psi ^c_{h,x_c}\mathrm {d}x_c\nonumber \\&+\frac{\Xi }{2m}\cos ^3\theta \int \limits ^1_0\psi ^b_k\psi ^b_{i,x_bx_b} \mathrm {d}x_b\int \limits ^1_0\psi ^b_{j,x_b}\psi ^b_{h,x_b}\mathrm {d}x_b\nonumber \\&-\frac{\alpha }{2}\psi ^b_{k}(1)\psi ^c_{i,x_c}(1) \int \limits ^1_0\psi ^b_{j,x_b}\psi ^b_{h,x_b}\mathrm {d}x_b\nonumber \\&-\frac{\alpha \kappa }{2}\cos \theta \psi ^b_{k}(1)\psi ^b_{i,x_b}(1) \int \limits ^1_0\psi ^b_{j,x_b}\psi ^b_{h,x_b}\mathrm {d}x_b, \end{aligned}$$
(41)
$$\begin{aligned} \Delta _{kijh}= & {} \frac{\alpha }{2}\int \limits ^1_0\psi ^c_k\psi ^c_{i,x_cx_c} \mathrm {d}x_c\int \limits ^1_0\phi ^c_{j,x_c}\phi ^c_{h,x_c}\mathrm {d}x_c\nonumber \\&+\frac{\Xi }{2m}\cos ^3\theta \int \limits ^1_0\psi ^b_k\psi ^b_{i,x_bx_b}\mathrm {d}x_b \int \limits ^1_0\phi ^b_{j,x_b}\phi ^b_{h,x_b}\mathrm {d}x_b\nonumber \\&-\frac{\alpha }{2} \psi ^b_{k}(1)\psi ^b_{i,x_b}(1)\int \limits ^1_0 \phi ^c_{j,x_c}\phi ^c_{h,x_c}\mathrm {d}x_c\nonumber \\&-\frac{\alpha \kappa }{2}\cos \theta \psi ^b_{k}(1)\psi ^b_{i,x_b}(1) \int \limits ^1_0\phi ^b_{j,x_b}\phi ^b_{h,x_b}\mathrm {d}x_b, \end{aligned}$$
(42)
$$\begin{aligned} \mu ^v_k= & {} \frac{1}{2}\int \limits ^1_0c^v_c(\phi ^c_k)^2\mathrm {d}x_c +\frac{\cos ^3\theta }{2m}\int \limits ^1_0c^v_b(\phi ^b_k)^2\mathrm {d}x_b,\nonumber \\ f_k= & {} \int \limits ^1_0p^c_v\phi ^c_k\mathrm {d}x_c+\frac{\cos ^3\theta }{m} \int \limits ^1_0p^b_v\phi ^b_k\mathrm {d}x_b, \end{aligned}$$
(43)
$$\begin{aligned} \mu ^w_k= & {} \frac{1}{2}\int \limits ^1_0c^w_c(\psi ^c_{k})^2\mathrm {d}x_c +\frac{\cos ^3\theta }{2m}\int \limits ^1_0c^w_b(\psi ^b_k)^2\mathrm {d}x_b,\nonumber \\ p_k= & {} \int \limits ^1_0p^c_w \psi ^c_k\mathrm {d}x_c+\frac{\cos ^3\theta }{m}\int \limits ^1_0p^b_w\psi ^b_k\mathrm {d}x_b. \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, X., He, K. et al. Revisited dynamic modeling and eigenvalue analysis of the cable-stayed beam. Acta Mech. Sin. 36, 950–963 (2020). https://doi.org/10.1007/s10409-020-00971-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00971-2

Keywords

Navigation