Skip to main content
Log in

Role of interstitial flow in tumor migration through 3D ECM

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Cancer invasion in tissue is simultaneously regulated by chemical and mechanical cues. Evidences suggest that interstitial flow plays a critical role in tumor metastasis. On one hand, the distribution of chemokines around cell is influenced by flow. On the other hand, interstitial flow may reconfigure the alignment of fiber matrix, which greatly changes the contact force between cell and extracellular matrix. In this study, we have upgraded a model by which we can quantitatively investigate the influence of flow on tumor cell migration. A hydrodynamic analysis of shear stress on a slender body is introduced to simulate the fiber realignment. Factors such as subtle flow and cell–matrix interaction which dominate tumor migration are integrated in this novel model. Simulation results show interstitial flow facilitates tumor cell migration in the flow direction. Moreover, the flow-related chemical and mechanical cues have a synergistic effect on the migration. This model provides better understanding on cancer metastasis and helps design vitro experiment precisely.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolf, K., Mazo, I., Leung, H., et al.: Compensation mechanism in tumor cell migration: mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003)

    Article  Google Scholar 

  2. Dietrich, M., Roy, H.L., David, B.B., et al.: Guiding 3D cell migration in deformed synthetic hydrogel microstructures. Soft Matter 14, 2816–2826 (2018)

    Article  Google Scholar 

  3. Pedersen, J.A., Lichter, S., Swartz, M.A.: Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces. J. Biomech. 43, 900–905 (2010)

    Article  Google Scholar 

  4. Kadler, K.E.: Fell Muir review: collagen fibril formation in vitro and in vivo. Int. J. Exp. Pathol. 98, 4–16 (2017)

    Article  Google Scholar 

  5. Abhilash, A.S., Baker, B.M., Trappmann, B., et al.: Remodeling of fibrous extracellular matrices by contractile cells: predictions from discrete fiber network simulations. Biophys. J. 107, 1829–1840 (2014)

    Article  Google Scholar 

  6. Gurdon, J.B., Bourillot, P.Y.: Morphogen gradient interpretation. Nature 413, 797–803 (2001)

    Article  Google Scholar 

  7. Xie, D., Liu, Z., Wu, J., et al.: The effects of activin A on the migration of human breast cancer cells and neutrophils and their migratory interaction. Exp. Cell Res. 357, 107–115 (2017)

    Article  Google Scholar 

  8. Ma, Y.V., Lam, C., Dalmia, S., et al.: Mechanical regulation of breast cancer migration and apoptosis via direct and indirect osteocyte signaling. J. Cell. Biochem. 119, 5665–5675 (2018)

    Article  Google Scholar 

  9. Spill, F., Reynolds, D.S., Kamm, R.D., et al.: Impact of the physical microenvironment on tumor progression and metastasis. Curr. Opin. Biotech. 40, 41–48 (2016)

    Article  Google Scholar 

  10. Dasgupta, I., McCollum, D.: Control of cellular responses to mechanical cues through YAP/TAZ regulation. J. Biol. Chem. (2019). https://doi.org/10.1074/jbc.rev119.007963

    Article  Google Scholar 

  11. Rouillard, A.D., Holmes, J.W.: Mechanical regulation of fibroblast migration and collagen remodelling in healing myocardial infarcts. J. Physiol. 590, 4585–4602 (2012)

    Article  Google Scholar 

  12. Lee, H.J., Diaz, M.F., Price, K.M., et al.: Fluid shear stress activates YAP1 to promote cancer cell motility. Nat. Commun. (2017). https://doi.org/10.1038/ncomms14122

    Article  Google Scholar 

  13. Evje, S., Waldeland, J.O.: How tumor cells possibly can make use of interstitial fluid flow in a strategy for metastasis. Cell. Mol. Bioeng. 12, 227–254 (2019)

    Article  Google Scholar 

  14. Polacheck, W.J., Kamm, R.D.: Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. USA 108, 11115–11120 (2011)

    Article  Google Scholar 

  15. Fleury, M.E., Boardman, K.C., Swartz, M.A.: Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys. J. 91, 113–121 (2006)

    Article  Google Scholar 

  16. Kadariya, Y., Cheung, M., Xu, J., et al.: Bap1 is a bona fide tumor suppressor: genetic evidence from mouse models carrying heterozygous germline Bap1 mutations. Cancer Res. 76, 2836–2844 (2016)

    Article  Google Scholar 

  17. Waldeland, J.O., Steinar, E.: A multiphase model for exploring tumor cell migration driven by autologous chemotaxis. Chem. Eng. Sci. 191, 268–287 (2018)

    Article  Google Scholar 

  18. Lo, S.H.: Focal adhesions: what’s new inside. Dev. Biol. 294, 280–291 (2006)

    Article  Google Scholar 

  19. Shields, J.D., Fleury, M.E., Yong, C., et al.: Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial fluid flow and autocrine CCR7 signaling. Cancer Cell 11, 526–538 (2007)

    Article  Google Scholar 

  20. Ng, C.P.: Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118, 4731–4739 (2005)

    Article  Google Scholar 

  21. Di Lullo, G.A., Sweeney, S.M., Korkko, J., et al.: Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277, 4223–4231 (2002)

    Article  Google Scholar 

  22. Sivakumar, L., Agarwal, G.: The influence of discoidin domain receptor 2 on the persistence length of collagen type I fibers. Biomaterials 31, 4802–4808 (2010)

    Article  Google Scholar 

  23. Chambers, J.A., Harris, A.: Expression of the cystic fibrosis gene and the major pancreatic mucin gene, MUC1, in human ductal epithelial cells. J. Cell Sci. 105, 417–422 (1993)

    Google Scholar 

  24. Conklin, M.W., Eickhoff, J.C., Riching, K.M., et al.: Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011)

    Article  Google Scholar 

  25. Riching, K.M., Cox, B.L., Salick, M.R., et al.: 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 107, 2546–2558 (2014)

    Article  Google Scholar 

  26. Gersh, K.C., Edmondson, K.E., Weisel, J.W.: Flow rate and fibrin fiber alignment. J. Thromb. Haemost. 8, 2826–2828 (2010)

    Article  Google Scholar 

  27. Lanfer, B., Freudenberg, U., Zimmermann, R., et al.: Aligned fibrillar collagen matrices obtained by shear flow deposition. Biomaterials 29, 3888–3895 (2008)

    Article  Google Scholar 

  28. Provenzano, P.P., Inman, D.R., Eliceiri, K.W., et al.: Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95, 5374–5384 (2008)

    Article  Google Scholar 

  29. Zaman, M.H., Kamm, R.D., Matsudaira, P., et al.: Computational model for cell migration in three-dimensional matrices. Biophys. J. 89, 1389–1397 (2005)

    Article  Google Scholar 

  30. Schlüter, D.K., Ramis-Conde, I., Chaplain, M.A.J.: Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. Biophys. J. 103, 1141–1151 (2012)

    Article  Google Scholar 

  31. Edalgo, Y.N., Zornes, A.L., Versypt, A.N.F.: A hybrid discrete continuous model of metastatic cancer cell migration through a remodeling extracellular matrix. AIChE J. (2019). https://doi.org/10.1002/aic.16671

    Article  Google Scholar 

  32. Cox, R.G.: The motion of long slender bodies in a viscous fluid. I: General theory. J. Fluid Mech. 44, 791–810 (1970)

    Article  Google Scholar 

  33. Sun, M., Bloom, A.B., Zaman, M.H., et al.: Rapid quantification of 3D collagen fiber alignment and fiber intersection correlations with high sensitivity. PLoS ONE 10, e0131814 (2015). https://doi.org/10.1371/journal.pone.0131814

    Article  Google Scholar 

  34. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1, 27–34 (1949)

    Article  Google Scholar 

  35. Nuhn, J.A.M., Perez, A.M., Schneider, I.C.: Contact guidance diversity in rotationally aligned collagen matrices. Acta Biomater. 66, 248–257 (2017)

    Article  Google Scholar 

  36. Hoskins, M.H., Dong, C.: Kinetics analysis of binding between melanoma cells and neutrophils. Mol. Cell Biomech. 3, 79–87 (2006)

    Google Scholar 

  37. Tong, C.F., Zhang, Y., Lu, S.Q., et al.: Binding of intercellular adhesion molecule 1 to β2-integrin regulates distinct cell adhesion processes on hepatic and cerebral endothelium. Am. J. Physiol. Cell Physiol. 315, C409–C421 (2018)

    Article  Google Scholar 

  38. Li, A., Sun, M., Spill, F., et al.: Are the effects of independent biophysical factors linearly additive? A 3D tumor migration model. Biophys. J. 117, 1702–1713 (2019)

    Article  Google Scholar 

  39. Tan, J., Shen, H., Saltzman, W.M.: Micron-scale positioning of features influences the rate of polymorphonuclear leukocyte migration. Biophys. J. 81, 2569–2579 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 11672182) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant 20130073110059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Sun, R. Role of interstitial flow in tumor migration through 3D ECM. Acta Mech. Sin. 36, 768–774 (2020). https://doi.org/10.1007/s10409-020-00959-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00959-y

Keywords

Navigation