Skip to main content
Log in

Nonlocal thermo-elastic constitutive relation of fibre-reinforced composites

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The effective properties of composite materials have been predicted by various micromechanical schemes. For composite materials of constituents which are described by the classical governing equations of the local form, the conventional micromechanical schemes usually give effective properties of the local form. However, it is recognized that under general loading conditions, spatiotemporal nonlocal constitutive equations may better depict the macroscopic behavior of these materials. In this paper, we derive the thermo-elastic dynamic effective governing equations of a fibre-reinforced composite in a coupled spatiotemporal integral form. These coupled equations reduce to the spatial nonlocal peridynamic formulation when the microstructural inertial effects are neglected. For static deformation and steady-state heat conduction, we show that the integral formulation is superior at capturing the variations of the average displacement and temperature in regions of high gradients than the conventional micromechanical schemes. The approach can be applied to analogous multi-field coupled problems of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hashin, Z.: Analysis of composite materials—a survey. J. Appl. Mech. 50, 481–505 (1983)

    MATH  Google Scholar 

  2. Bazănt, Z.P., Jirasek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128, 1119–1149 (2002)

    Google Scholar 

  3. Hu, G.K., Liu, X.N., Xun, F.: Micromechanics of heterogeneous micropolar mediums. Adv. Mech. 34, 195–214 (2004). (in Chinese)

    Google Scholar 

  4. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Google Scholar 

  5. Rueger, Z., Lakes, R.S.: Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120, 065501 (2018)

    Google Scholar 

  6. Drugan, W.J., Willis, J.R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44, 497–524 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741–753 (2007)

    MathSciNet  Google Scholar 

  8. Ma, G.C., Sheng, P.: Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv. 2, 1501595 (2016)

    Google Scholar 

  9. Willis, J.R.: Dynamics of composites. Continuum Micromechanics (CISM Lecture Notes)., pp. 265–290. Springer, Berlin (1997)

    Google Scholar 

  10. Sridhar, A., Kouznetsova, V.G., Geers, M.G.D.: A general multiscale framework for the emergent effective elastodynamics of metamaterials. J. Mech. Phys. Solids 111, 414–433 (2018)

    MathSciNet  Google Scholar 

  11. Wang, L.J., Xu, J.F., Wang, J.X., et al.: A mechanism-based spatiotemporal non-local constitutive formulation for elastodynamics of composites. Mech. Mater. 128, 105–116 (2019)

    Google Scholar 

  12. Silling, S.A.: Origin and effect of nonlocality in a composite. J. Mech. Mater. Struct. 9, 245–258 (2014)

    Google Scholar 

  13. Silling, S.A.: Reformation of elasticity theory for discontinuities and longrange force. J. Mech. Phys. Solids 8, 175–209 (2000)

    MATH  Google Scholar 

  14. Gao, X.L., Li, K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids Struct. 42, 1649–1667 (2005)

    MATH  Google Scholar 

  15. Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behavior, 2nd edn. Taylor and Francis, New York (1997)

    Google Scholar 

  16. Xu, F., Lu, T.J.: Introduction to Skin Biothermomechanics and Thermal Pain. Springer, Berlin (2011)

    Google Scholar 

  17. Yu, Y.J., Li, C.L., Xue, Z.N., et al.: The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect. Phys. Lett. A 380, 255–261 (2016)

    Google Scholar 

  18. Wang, L.J., Xu, J.F., Wang, J.X.: A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction. Int. J. Heat Mass Transf. 118, 1284–1292 (2018)

    Google Scholar 

  19. Oterkus, S., Madenci, E., Agwai, A.: Fully coupled peridynamic thermomechanics. J. Mech. Phys. Solids 64, 1–23 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Gerstle, W., Silling, S.A., Read, D., et al.: Peridynamic simulation of electromigration. Comput. Mater. Continua 8, 75–92 (2008)

    Google Scholar 

  21. Oterkus, S., Madenci, E., Agwai, A.: Peridynamic thermal diffusion. J. Comput. Phys. 265, 71–96 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Chen, Z., Bobaru, F.: Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion. Comput. Phys. Commun. 197, 51–60 (2015)

    Google Scholar 

  23. Liao, Y., Liu, L.S., Liu, Q.W., et al.: Peridynamic simulation of transient heat conduction problems in functionally gradient materials with cracks. J. Therm. Stress 40, 1484–1501 (2017)

    Google Scholar 

  24. Yu, Y.J., Tian, X.G., Xiong, Q.L.: Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A-Solids 60, 238–253 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Xue, Z.N., Yu, Y.J., Li, X.Y., et al.: Nonlocal thermoelastic analysis with fractional order strain in multilayered structures. J. Therm. Stress 41, 80–97 (2018)

    Google Scholar 

  26. Wang, X.Q., Yang, Q.S.: A general solution for one dimensional chemo-mechanical coupled hydrogel rod. Acta Mech. Sin. 34, 392–399 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Wang, L.J., Xu, J.F., Wang, J.X.: Static and dynamic Green’s functions in peridynamics. J. Elast. 126, 95–125 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Kaddour, A.S., Hinton, M.J.: Input data for test cases used in benchmarking triaxial failure theories of composites. J. Composite Mater. 46, 2295–2312 (2012)

    Google Scholar 

  29. Choi, I., Horgan, C.O.: Saint-Venant end effects for plane deformation of sandwich strips. Int. J. Solids Struct. 14, 187–195 (1978)

    MATH  Google Scholar 

  30. Luciano, R., Willis, J.R.: Boundary-layer corrections for stress and strain fields in randomly heterogeneous materials. J. Mech. Phys. Solids 51, 1075–1088 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Dang, X., Liu, Y., Wang, L.J., et al.: Solutions of the elastic fields in a half plane region containing multiple inhomogeneities with the equivalent inclusion method and the applications to properties of composites. Acta Mech. 230, 1529–1547 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Duan, H.L., Karihaloo, B.L.: Thermo-elastic properties of heterogeneous materials with imperfect interfaces: Generalized Levin’s formula and Hill’s connections. J. Mech. Phys. Solids 55, 1036–1052 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Wang, L.J., Xu, J.F., Wang, J.X.: The Green’s functions for peridynamic non-local diffusion. Proc. R. Soc. A 472, 20160185 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Nan, C.W., Birringer, R., Clarke, D.R., et al.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997)

    Google Scholar 

  35. Alibeigloo, A.: Elasticity solution of functionally graded carbon nanotube-reinforced composite cylindrical panel subjected to thermo mechanical load. Composites Part B 87, 214–226 (2016)

    Google Scholar 

  36. Silling, S.A., Zimmermann, M., Abeyaratne, R.: Deformation of a peridynamic bar. J. Elast. 73, 173–190 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Ke, L.L., Wang, Y.S., Yang, J., et al.: Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory. Acta Mech. Sin. 30, 516–525 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Li, D., He, T.: Investigation of generalized piezoelectric-thermoelastic problem with nonlocal effect and temperature-dependent properties. Heliyon. 4, e00860 (2018)

    Google Scholar 

  39. Wang, Y.T., Zhou, X., Kou, M.: An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks. Eur. J. Mech. A Solids 73, 282–305 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Alali, B., Lipton, R.: Multiscale dynamics of heterogeneous media in the peridynamic formulation. J. Elast. 106, 71–103 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Buryachenko, V.A.: Effective properties of thermoperistatic random structure composites: Some background principles. Math. Mech. Solids 22, 1366–1386 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

L.J. Wang and J.X. Wang thank the support of the National Natural Science Foundation of China (Grants. 11872075 and 11890681), and the China Postdoctoral Science Foundation (Grant 2018M641081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxiang Wang.

Appendix: Relation of the nonlocal description to Saint−Venant’s principle

Appendix: Relation of the nonlocal description to Saint−Venant’s principle

Fig. A1
figure 4

Characteristic lengths of nonlocal formulation and Saint–Venant’s principle

We note that Choi and Horgan [29] have studied Saint–Venant’s end effect for a semi-infinite composite strip in which a material is embedded between two layers of a different material, and the strip is subjected to self-equilibrating loads at the end. This is the structure in the paper of Silling [12], namely, the two-dimensional counterpart of the composite cylinder in the present work. The solutions of the two-dimensional strip are also given by expression (62b), but with \(\chi _{u}\) expressed as

$$\begin{aligned} \chi _u^{2\mathrm{D}}=\frac{1}{r_0}\sqrt{\frac{3{\overline{E}}\mu _{\mathrm{m}}}{E_{\mathrm{f}}E_{\mathrm{m}}V_{\mathrm{f}}(1-V_{\mathrm{f}})^2}}, \end{aligned}$$
(A.1)

in which \(r_0\) is the half width of the composite strip. By the solution of Ref. [29] for a semi-infinite composite strip, the Airy stress function, from which the displacement, strain, and stress can be derived, can be expressed as

$$\begin{aligned} \varphi =F{\mathrm{e}}^{-{\hat{\chi }}|z-L|} , \end{aligned}$$
(A.2)

where we have used \(|z-L|\) to denote the distance away from the loaded end. F is a function of the coordinate in the transverse direction. The solution of \({\hat{\chi }}\) is generally complicated. However, for the case when \(E_{\mathrm{f}}/E_{\mathrm{m}}\gg 1\), \({\hat{\chi }}\) can be solved from a transcendental equation as [29]

$$\begin{aligned} {\hat{\chi }}\approx \frac{1}{r_0}\sqrt{\frac{4\mu _{\mathrm{m}}(1-\nu _{\mathrm{f}}^2)(V_{\mathrm{f}}^2-3V_{\mathrm{f}}+3)}{E_{\mathrm{f}}V_{\mathrm{f}}^3(1-V_{\mathrm{f}})}}. \end{aligned}$$
(A.3)

With \(E_{\mathrm{f}}/E_{\mathrm{m}}=10\), the Poisson ratio of the fibre and matrix \(\nu _{\mathrm{f}}=\nu _{\mathrm{m}}=0.3\), \({\hat{\chi }}\) and \(\chi _u^{2\mathrm{D}}\) depend on the volume fraction of the fibre \(V_{\mathrm{f}}\) only. Therefore, we compare the values of \(\chi _u^{2\mathrm{D}}\) and \({\hat{\chi }}\) in Fig. A1, for different values of \(V_{\mathrm{f}}\). In Fig. A1, \(L_{\mathrm{c}}\) denotes \(1/\chi _u^{2\mathrm{D}}\) and \(1/{\hat{\chi }}\). The orders of magnitude of \(\chi _u^{2\mathrm{D}}\) and \({\hat{\chi }}\) are comparable, but the values are generally different, though they are close around \(V_{\mathrm{f}}\approx 0.5\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xu, J., Wang, J. et al. Nonlocal thermo-elastic constitutive relation of fibre-reinforced composites. Acta Mech. Sin. 36, 176–187 (2020). https://doi.org/10.1007/s10409-019-00916-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00916-4

Keywords

Navigation