Skip to main content
Log in

Parametric identification of time-varying systems from free vibration using intrinsic chirp component decomposition

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Time-varying systems are applied extensively in practical applications, and their related parameter identification techniques are of great significance for structural health monitoring of time-varying systems. To improve the identification accuracy for time-varying systems, this study puts forward a novel parameter identification approach in the time–frequency domain using intrinsic chirp component decomposition (ICCD). ICCD is a powerful tool for signal decomposition and parameter extraction, with good signal reconstruction capability in a high-noise environment. To maintain good identification effects for the time-varying system in a noisy environment, the proposed method introduces a redundant Fourier model for the non-stationary signal, including instantaneous frequency (IF) and instantaneous amplitude (IA). The accuracy and effectiveness of the proposed approach are demonstrated by a single-degree-of-freedom system with three types of time-varying parameters, as well as an example of a multi-degree-of-freedom system. The effects of different levels of measured noise on the identified results are also discussed in detail. Numerical results show that the proposed method is very effective in tracking the smooth, periodical, and non-smooth variations of time-varying systems over the entire identification time period even when the response signal is contaminated by intense noise.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Han, Q.K., Yao, H.L., Wen, B.C.: Parameter identifications for a rotor system based on its finite element model and with varying speeds. Acta. Mech. Sin. 26, 299–303 (2010)

    Article  Google Scholar 

  2. Liu, T., Yan, S.Z., Zhang, W.: Time–frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationary Gabor transform. Mech. Syst. Signal Process. 75, 228–244 (2016)

    Article  Google Scholar 

  3. Au, F.T.K., Jiang, R.J., Cheung, Y.K.: Parameter identification of vehicles moving on continuous bridges. J. Sound Vib. 269, 91–111 (2004)

    Article  Google Scholar 

  4. Feng, K., Li, Z., Gao, G.Y., et al.: Damage detection method in complicated beams with varying flexural stiffness. Appl. Math. Mech. 32, 469–478 (2011)

    Article  MathSciNet  Google Scholar 

  5. Wang, X.J., Yang, C., Qiu, Z.P.: Non-probabilistic information fusion technique for structural damage identification based on measured dynamic data with uncertainty. Acta. Mech. Sin. 29, 202–210 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bendat, J.S., Piersol, A.G.: Engineering applications of correlation and spectral analysis. Wiley, New York (1993)

    MATH  Google Scholar 

  7. Hu, H., Ding, R.: Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model. Nonlinear Dyn. 76, 777–784 (2014)

    Article  MathSciNet  Google Scholar 

  8. Ge, X.B., Luo, Z., Ma, Y., et al.: A novel data-driven model based parameter estimation of nonlinear systems. J. Sound Vib. 453, 188–200 (2019)

    Article  Google Scholar 

  9. Zhu, Y.P., Lang, Z.Q.: Design of nonlinear systems in the frequency domain: an output frequency response function-based approach. IEEE Trans. Control Syst. Technol. 26, 1358–1371 (2017)

    Article  Google Scholar 

  10. Li, J.P., Hua, C.C., Tang, Y.G., et al.: A time-varying forgetting factor stochastic gradient combined with Kalman filter algorithm for parameter identification of dynamic systems. Nonlinear Dyn. 78, 1943–1952 (2014)

    Article  Google Scholar 

  11. Vicario, F., Phan, M.Q., Betti, R., et al.: Linear state representations for identification of bilinear discrete-time models by interaction matrices. Nonlinear Dyn. 77, 1561–1576 (2014)

    Article  MathSciNet  Google Scholar 

  12. Xie, Y., Liu, P., Cai, L.P.: Modal parameter identification of flexible spacecraft using the covariance-driven stochastic subspace identification (SSI-COV) method. Acta. Mech. Sin. 32, 710–719 (2016)

    Article  MathSciNet  Google Scholar 

  13. Shi, Z.Y., Law, S.S., Li, H.N.: Subspace-based identification of linear time-varying system. AIAA Journal 45, 2042–2050 (2007)

    Article  Google Scholar 

  14. Ghanem, R., Romeo, F.: A wavelet-based approach for the identification of linear time-varying dynamical systems. J. Sound Vib. 234, 555–576 (2000)

    Article  Google Scholar 

  15. Yang, Y., Peng, Z.K., Dong, X.J., et al.: Nonlinear time-varying vibration system identification using parametric time–frequency transform with spline kernel. Nonlinear Dyn. 85, 1679–1694 (2016)

    Article  MathSciNet  Google Scholar 

  16. Shan, X., Burl, J.B.: Continuous wavelet based linear time-varying system identification. Signal Process. 91, 1476–1488 (2011)

    Article  Google Scholar 

  17. Dziedziech, K., Staszewski, W.J., Uhl, T.: Wavelet-based modal analysis for time-variant systems. Mech. Syst. Signal Process. 50–51, 323–337 (2015)

    Article  Google Scholar 

  18. Staszewski, W.J., Wallace, D.M.: Wavelet-based frequency response function for time-variant systems—an exploratory study. Mech. Syst. Signal Process. 47, 35–49 (2014)

    Article  Google Scholar 

  19. Roshan-Ghias, A., Shamsollahi, M.B., Mobed, M., et al.: Estimation of modal parameters using bilinear joint time–frequency distributions. Mech. Syst. Signal Process. 21, 2125–2136 (2007)

    Article  Google Scholar 

  20. Xu, X., Zhang, Z., Hua, H., et al.: Identification of time-varying modal parameters using linear time-frequency representation. Chin. J. Mech. Eng. 16, 445–448 (2003)

    Article  Google Scholar 

  21. Kim, Y.S., Chen, L.Q.: Separation of closely spaced modes by combining complex envelope displacement analysis with method of generating intrinsic mode functions through filtering algorithm based on wavelet packet decomposition. Appl. Math. Mech. 34, 801–810 (2013)

    Article  MathSciNet  Google Scholar 

  22. Shi, Z.Y., Law, S.S.: Identification of linear time-varying dynamical systems using Hilbert transform and empirical mode decomposition method. J. Appl. Mech. 74, 223–230 (2007)

    Article  Google Scholar 

  23. Zheng, M., Shen, F., Dou, Y.P., et al.: Modal identification based on Hilbert-Huang transform of structural response with SVD preprocessing. Acta. Mech. Sin. 25, 883–888 (2009)

    Article  MathSciNet  Google Scholar 

  24. Chen, S., Peng, Z., Yang, Y., et al.: Intrinsic chirp component decomposition by using Fourier series representation. Signal Process. 137, 319–327 (2017)

    Article  Google Scholar 

  25. Yang, Y., Peng, Z.K., Dong, X.J., et al.: General parameterized time-frequency transform. IEEE Trans. Signal Process. 62, 2751–2764 (2014)

    Article  MathSciNet  Google Scholar 

  26. Feldman, M.: Non-linear system vibration analysis using Hilbert transform. I. Free vibration analysis method FREEVIB. Mech. Syst. Signal Process. 8, 119–127 (1994)

    Article  Google Scholar 

  27. Guo, Y., Kareem, A.: Non-stationary frequency domain system identification using time–frequency representations. Mech. Syst. Signal Process. 72–73, 712–726 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The research work was supported by the National Natural Science Foundation of China (Grants 11702170, 11632011, and 11802279) and the China Postdoctoral Science Foundation (Grant 2016M601585).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhike Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Chen, S., Dong, X. et al. Parametric identification of time-varying systems from free vibration using intrinsic chirp component decomposition. Acta Mech. Sin. 36, 188–205 (2020). https://doi.org/10.1007/s10409-019-00905-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00905-7

Keywords

Navigation