Skip to main content
Log in

Coupled thermoelastic theory and associated variational principles based on decomposition of internal energy

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A new framework of coupled thermoelasticity is constructed in this paper based on a decomposition of internal energy into free internal energy and dissipative energy. Fundamental equations (i.e. divergence and gradient equations, constitutive equations including evolving laws) along with proper boundary conditions are all included in this framework, from which two novel dual-complementary variational principles with explicit functionals are proposed. Unlike the conventional thermoelastic theory, the proposed variational principles for thermoelasticity are established without the approximate assumption of small temperature changes. To verify the usefulness of the proposed variational principles in simulating coupled thermoelastic problems, a coupled thermoelastic example is numerically implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altay, G., Dokmeci, M.C.: Variational principles for piezoelectric, thermopiezoelectric, and hygrothermopiezoelectric continua revisited. Mech. Adv. Mater. Struct. 14, 549–562 (2007)

    Article  Google Scholar 

  2. Hu, H.C.: Variational Principles of Theory of Elasticity with Applications. Science Press, Beijing (1984)

    Google Scholar 

  3. Meng, Z., Cheng, H., Ma, L., et al.: The dimension splitting element-free galerkin method for 3d transient heat conduction problems. Sci. China Phys. Mech. Astron. 62, 040711 (2019)

    Article  Google Scholar 

  4. Liu, J., Foo, C.C., Zhang, Z.Q.: A 3d multi-field element for simulating the electromechanical coupling behavior of dielectric elastomers. Acta Mech. Solida Sin. 30, 374–389 (2017)

    Article  Google Scholar 

  5. Qing, G., Mao, J., Liu, Y.: Generalized mixed finite element method for 3d elasticity problems. Acta Mech. Sin. 34, 371–380 (2018)

    Article  MathSciNet  Google Scholar 

  6. Qing, G., Tian, J.: Highly accurate symplectic element based on two variational principles. Acta Mech. Sin. 34, 151–161 (2018)

    Article  MathSciNet  Google Scholar 

  7. Yang, J., Zhou, T.: Bifurcation and chaos of piezoelectric shell reinforced with BNNTs under electro-thermo-mechanical loadings. Acta Mech. Solida Sin. 32, 120–132 (2019)

    Article  Google Scholar 

  8. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  9. Biot, M.A.: Linear thermodynamics and the mechanics of solids. In: Proceedings of the Third US National Congress of Applied Mechanics, New York (1958)

  10. Herrmann, G.: On variational principles in thermoelasticity and heat conduction. Q. Appl. Math. 21, 151–155 (1963)

    Article  MathSciNet  Google Scholar 

  11. Ben-Amoz, M.: On a variational theorem in coupled thermoelasticity. J. Appl. Mech. 32, 943–945 (1965)

    Article  Google Scholar 

  12. Yang, Q., Stainier, L., Ortiz, M.: A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54, 401–424 (2006)

    Article  MathSciNet  Google Scholar 

  13. Stainier, L., Ortiz, M.: Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity. Int. J. Solids Struct. 47, 705–715 (2010)

    Article  Google Scholar 

  14. Sherief, H.H., Hamza, F.A., Saleh, H.A.: The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42, 591–608 (2004)

    Article  MathSciNet  Google Scholar 

  15. Yang, Q.S., Qin, Q.H., Ma, L.H., et al.: A theoretical model and finite element formulation for coupled thermo-electro-chemo-mechanical media. Mech. Mater. 42, 148–156 (2010)

    Article  Google Scholar 

  16. Kuang, Z.B.: Variational principles for generalized dynamical theory of thermopiezoelectricity. Acta Mech. 203, 1–11 (2009)

    Article  Google Scholar 

  17. Hu, S.L., Shen, S.P.: Non-equilibrium thermodynamics and variational principles for fully coupled thermal–mechanical–chemical processes. Acta Mech. 224, 2895–2910 (2013)

    Article  MathSciNet  Google Scholar 

  18. Yu, P.F., Shen, S.P.: A fully coupled theory and variational principle for thermal–electrical–chemical–mechanical processes. J. Appl. Mech. 81, 111005 (2014)

    Article  Google Scholar 

  19. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science. Wiley, New York (2000)

    MATH  Google Scholar 

  20. Dhaliwal, R.S., Sherief, H.H.: Generalized thermoelasticity for anisotropic media. Q. Appl. Math. 38, 1–8 (1980)

    Article  MathSciNet  Google Scholar 

  21. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, New York (2014)

    MATH  Google Scholar 

  22. Zhang, X.L., Zhong, Z.: A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction. J. Mech. Phys. Solids 107, 49–75 (2017)

    Article  MathSciNet  Google Scholar 

  23. Zhang, X., Zhong, Z.: Thermo-chemo-elasticity considering solid state reaction and the displacement potential approach to quasi-static chemo-mechanical problems. Int. J. Appl. Mech. 10, 1850112 (2018)

    Article  Google Scholar 

  24. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  25. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  26. Nowacki, W.: Dynamic Problems of Thermoelasticity. Springer Science & Business Media, Berlin (1975)

    MATH  Google Scholar 

  27. Aouadi, M.: Generalizations of Maysel’s formula to micropolar thermoviscoelasticity with non-small temperature changes. Technische Mechanik 27, 48–60 (2007)

    Google Scholar 

  28. Zhang, X.L., Zhong, Z.: A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials. Sci. China Phys. Mech. 60, 49–75 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11932005 and 11772106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhong.

Appendices

Appendix A

The constitutive relation in conventional coupled thermoelasticity is expressed as [8]

$$\left\{ \begin{aligned} {\dot{\varvec{\sigma }}} & = {\varvec{C}}:{\dot{\varvec{\varepsilon }}} - {\varvec{\beta}}\dot{T}, \\ \dot{\eta } & = {\varvec{\beta}}:{\dot{\varvec{\varepsilon }}} + {{c\dot{T}} \mathord{\left/ {\vphantom {{c\dot{T}} {T,}}} \right. \kern-0pt} {T,}} \\ \end{aligned} \right.$$
(A.1)

where \(\dot{\eta } = {{\left( {\dot{e} - {\varvec{\upsigma}}:{\dot{\varvec{\varepsilon }}}} \right)} \mathord{\left/ {\vphantom {{\left( {\dot{e} - {\varvec{\upsigma}}:{\dot{\varvec{\varepsilon }}}} \right)} T}} \right. \kern-0pt} T}\) is the total entropy density [8]. Hence, the irreversible entropy \(\eta^{\text{i}} = \eta - \eta^{\text{r}}\) renders \(T\dot{\eta }^{\text{i}} = \dot{\psi } = {\varvec{J}}_{\text{q}} \cdot {\varvec{X}}_{\text{q}}\), according to Eq. (4). \({\varvec{C}} = \frac{{\partial^{2} h}}{{\partial {\varvec{\upvarepsilon}}\partial {\varvec{\upvarepsilon}}}}\) denotes the stiffness, \(c = - T\frac{{\partial^{2} h}}{\partial T\partial T}\) is the heat capacity, and coupling coefficient \({\varvec{\upbeta}} = - \frac{{\partial^{2} h}}{{\partial {\varvec{\upvarepsilon}}\partial T}}\) where \(h = e - T\eta\) is the Helmholtz free energy density, rendering \(\dot{h} = \dot{h}\left( {{\varvec{\upvarepsilon}},T} \right) = {\varvec{\upsigma}}:{\dot{\varvec{\varepsilon }}} - \eta \dot{T}\) [22, 23].

One can prove that (see Appendix B for details)

$$\left\{ \begin{aligned} {\varvec{\beta}} & = - \frac{{C_{\text{q}}^{\text{r}} }}{T}{\varvec{\beta^{\prime}}}, \\ {\varvec{C}} &= {\varvec{C^{\prime}}} - \frac{{C_{\text{q}}^{\text{r}} }}{T}{\varvec{\beta^{\prime}\beta^{\prime}}} = {\varvec{C^{\prime}}} + {\varvec{\beta \beta^{\prime}}}, \\ \end{aligned} \right.$$
(A.2)

so that Eq. (14) can be rewritten as

$$\left\{ \begin{aligned} {\dot{\varvec{\sigma }}} & = {\varvec{C^{\prime}}}:{\dot{\varvec{\varepsilon }}} + \frac{{C_{\text{q}}^{\text{r}} }}{T}{\varvec{\beta^{\prime}}}\left( {\dot{T} - {\varvec{\beta^{\prime}}}:{\dot{\varvec{\varepsilon }}}} \right) = {\varvec{C}}:{\dot{\varvec{\varepsilon }}} - {\varvec{\beta}}\dot{T}, \\ \dot{\eta }^{\text{r}} & = - \frac{{C_{\text{q}}^{\text{r}} }}{T}{\varvec{\beta^{\prime}}}:{\dot{\varvec{\varepsilon }}} + \frac{{C_{\text{q}}^{\text{r}} }}{T}\dot{T} = {\varvec{\beta}}:{\dot{\varvec{\varepsilon }}} + \frac{{C_{\text{q}}^{\text{r}} }}{T}\dot{T}, \hfill \\ \end{aligned} \right.$$
(A.3)

which yields the first equation in (A.1). Moreover, we have from Eqs. (A.3)2 and (A.1)2

$$\dot{\eta }^{\text{i}} = \dot{\eta } - \dot{\eta }^{\text{r}} = {{C_{\text{q}}^{\text{i}} \dot{T}} \mathord{\left/ {\vphantom {{C_{\text{q}}^{\text{i}} \dot{T}} T}} \right. \kern-0pt} T} ,$$
(A.4)

where \(C_{\text{q}}^{\text{i}} = c - C_{\text{q}}^{\text{r}}\), and it can be proved that (see Appendix C)

$$C_{\text{q}}^{\text{i}} = \frac{\partial \psi }{\partial T},$$
(A.5)

which measures the energy dissipated per unit of temperature increase and can be referred to as the capacity of irreversible dissipating heat or the irreversible heat capacity. Accordingly, \(C_{\text{q}}^{\text{r}}\) can be referred to as the reversible heat capacity.

Hence, we conclude that constitutive relations (A.1) and (A.3) are inherently consistent.

Appendix B

According to \(T = T\left( {{\varvec{\upvarepsilon}},\eta^{\text{r}} } \right)\), we have \({\text{d}}T = \left( {\frac{\partial T}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{{\eta^{\text{r}} }} {\text{d}}{\varvec{\upvarepsilon}} + \left( {\frac{\partial T}{{\partial \eta^{\text{r}} }}} \right)_{{\varvec{\upvarepsilon}}} {\text{d}}\eta^{\text{r}}\) and

$$\left( {\frac{{\partial \eta^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} = - \frac{{\left( {\frac{\partial T}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{{\eta^{\text{r}} }} }}{{\left( {\frac{\partial T}{{\partial \eta^{\text{r}} }}} \right)_{{\varvec{\upvarepsilon}}} }},$$
(B.1)

where the subscript outside the parenthesis indicates which variable is being held constant during differentiation. Hence, in terms of \({\varvec{C^{\prime}}}\), \({\varvec{\beta^{\prime}}}\) and \(C_{\text{q}}^{\text{r}}\) [as defined in Eq. (14)], we have

$${\varvec{\beta}} = - \frac{{\partial^{2} h}}{{\partial {\varvec{\upvarepsilon}}\partial T}} = \left( {\frac{\partial }{{\partial {\varvec{\upvarepsilon}}}}\left( { - \frac{\partial h}{\partial T}} \right)_{{\varvec{\upvarepsilon}}} } \right)_{T} = \left( {\frac{\partial \eta }{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} = \left( {\frac{{\partial \eta^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} = - \frac{{\frac{{\partial^{2} e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}\partial \eta^{\text{r}} }}}}{{\frac{{\partial^{2} e^{\text{r}} }}{{\partial \eta^{\text{r}} \partial \eta^{\text{r}} }}}} = - \frac{{C_{\text{q}}^{\text{r}} }}{T}{\varvec{\beta^{\prime}}} ;$$
(B.2)

then

$$\begin{aligned} {\varvec{C}} & = \left( {\frac{{\partial^{2} h}}{{\partial {\varvec{\upvarepsilon}}\partial {\varvec{\upvarepsilon}}}}} \right)_{T} = \left[ {\frac{{\partial^{2} \left( {e - T\eta } \right)}}{{\partial {\varvec{\upvarepsilon}}\partial {\varvec{\upvarepsilon}}}}} \right)_{T} = \left( {\frac{{\partial^{2} \left( {e^{\text{r}} + \psi - T\eta } \right)}}{{\partial {\varvec{\upvarepsilon}}\partial {\varvec{\upvarepsilon}}}}} \right]_{T} \\ & = \left( {\frac{{\partial^{2} e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}\partial {\varvec{\upvarepsilon}}}}} \right)_{T} + \left( {\frac{{\partial^{2} \psi }}{{\partial {\varvec{\upvarepsilon}}\partial {\varvec{\upvarepsilon}}}}} \right)_{T} - T\left( {\frac{{\partial^{2} \eta }}{{\partial {\varvec{\upvarepsilon}}\partial {\varvec{\upvarepsilon}}}}} \right)_{T} \\ & = \left\{ {\frac{\partial }{{\partial {\varvec{\upvarepsilon}}}}\left[ {\left( {\frac{{\partial e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{{\eta^{\text{r}} }} + T\left( {\frac{{\partial \eta^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} } \right]} \right\}_{T} - T\left[ {\frac{\partial }{{\partial {\varvec{\upvarepsilon}}}}\left( {\frac{\partial \eta }{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} } \right]_{T} \\ & = \frac{{\partial^{2} e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}\partial {\varvec{\upvarepsilon}}}} + \frac{{\partial^{2} e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}\partial \eta^{\text{r}} }}\left( {\frac{{\partial \eta^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} + T\left( {\frac{{\partial {\varvec{\upbeta}}}}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} - T\left( {\frac{{\partial {\varvec{\upbeta}}}}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} \\ & = {\varvec{C^{\prime}}} + {\varvec{\beta \beta^{\prime}}}, \\ \end{aligned}$$
(B.3)

where use is made of \(\left( {\frac{{\partial \eta^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} = {\varvec{\beta}}\) from Eq. (B.2) and

$$\left[{\frac{{\partial e^{\text{r}} \left( {{\varvec{\upvarepsilon}},\eta^{\text{r}} } \right)}}{{\partial {\varvec{\upvarepsilon}}}}} \right]_{T} = \left( {\frac{{\partial e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{{\eta^{\text{r}} }} + \left( {\frac{{\partial e^{\text{r}} }}{{\partial \eta^{\text{r}} }}} \right)_{{\varvec{\upvarepsilon}}} \left( {\frac{{\partial \eta^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} = \left( {\frac{{\partial e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{{\eta^{\text{r}} }} + T\left( {\frac{{\partial \eta^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} ,$$
(B.4)
$$\left[ {\frac{\partial }{{\partial {\varvec{\upvarepsilon}}}}\left( {\frac{{\partial e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{{\eta^{\text{r}} }} } \right]_{T} = \left[ {\frac{\partial }{{\partial {\varvec{\upvarepsilon}}}}\left( {\frac{{\partial e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{{\eta^{\text{r}} }} } \right]_{{\eta^{\text{r}} }} + \left[ {\frac{\partial }{{\partial \eta^{\text{r}} }}\left( {\frac{{\partial e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{{\eta^{\text{r}} }} } \right]_{{\varvec{\upvarepsilon}}} \left( {\frac{{\partial \eta^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} = \frac{{\partial^{2} e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}\partial {\varvec{\upvarepsilon}}}} + \frac{{\partial^{2} e^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}\partial \eta^{\text{r}} }}\left( {\frac{{\partial \eta^{\text{r}} }}{{\partial {\varvec{\upvarepsilon}}}}} \right)_{T} ,$$
(B.5)

(Note: \({\varvec{\beta \beta^{\prime}}}\) represents dyadic production of \({\varvec{\beta}}\) and \({\varvec{\beta^{\prime}}}\), which is a fourth-order tensor.)

In conclusion,

$$\left\{ \begin{aligned} {\varvec{\beta}} & = - \frac{{C_{\text{q}}^{\text{r}} }}{T}{\varvec{\beta^{\prime}}}, \\ {\varvec{C}} & = {\varvec{C^{\prime}}} - \frac{{C_{\text{q}}^{\text{r}} }}{T}{\varvec{\beta^{\prime}\beta^{\prime}}} = {\varvec{C^{\prime}}} + {\varvec{\beta \beta^{\prime}}}, \\ \end{aligned} \right.$$
(B.6)

i.e. Eq. (A.2) holds true.

Appendix C

Recall that \(c = - T\frac{{\partial^{2} h}}{\partial T\partial T}\) and \(C_{\text{q}}^{\text{r}} = \frac{T}{{L_{\text{q}}^{\text{r}} }},L_{\text{q}}^{\text{r}} = \frac{{\partial^{2} e^{\text{r}} }}{{\partial \eta^{\text{r}} \partial \eta^{\text{r}} }}\); then

$$\begin{aligned} C_{\text{q}}^{\text{i}} & = c - C_{\text{q}}^{\text{r}} \\ &= -\, T\frac{{\partial^{2} h}}{\partial T\partial T} - \frac{T}{{L_{\text{q}}^{\text{r}} }} = - T\frac{{\partial^{2} h}}{\partial T\partial T} - \frac{T}{{\frac{{\partial^{2} e^{\text{r}} }}{{\partial \eta^{\text{r}} \partial \eta^{\text{r}} }}}} = - \,T\frac{{\partial^{2} \left( {e - T\eta } \right)}}{\partial T\partial T} - \frac{T}{{\frac{\partial }{{\partial \eta^{\text{r}} }}\frac{{\partial e^{\text{r}} }}{{\partial \eta^{\text{r}} }}}} \\ & = -\, T\left[ {\frac{{\partial^{2} e\left( {{\varvec{\upvarepsilon}},\eta } \right)}}{\partial T\partial T} - \frac{{\partial^{2} \left( {T\eta } \right)}}{\partial T\partial T}} \right] - \frac{T}{{\left( {\frac{\partial T}{{\partial \eta^{\text{r}} }}} \right)_{{\varvec{\upvarepsilon}}} }} \quad \left( {{\text{where}}{\kern 1pt} {\kern 1pt} :\left( {\frac{{\partial e^{\text{r}} }}{{\partial \eta^{\text{r}} }}} \right)_{{\varvec{\upvarepsilon}}} = T} \right) \\ &= - T\frac{\partial }{\partial T}\left[ {\left( {\frac{{\partial e\left( {{\varvec{\upvarepsilon}},\eta } \right)}}{\partial \eta }\frac{\partial \eta }{\partial T}} \right) - \left( {\eta + T\frac{\partial \eta }{\partial T}} \right)} \right]_{{\varvec{\upvarepsilon}}} - T\left( {\frac{{\partial \eta^{\text{r}} }}{\partial T}} \right)_{{\varvec{\upvarepsilon}}} \quad \left( {{\text{where}}{\kern 1pt} {\kern 1pt} :\left( {\frac{\partial T}{{\partial \eta^{\text{r}} }}} \right)_{{\varvec{\upvarepsilon}}} \left( {\frac{{\partial \eta^{\text{r}} }}{\partial T}} \right)_{{\varvec{\upvarepsilon}}} = 1} \right) \\ & = - T\left[ {\left( {\frac{{\partial^{2} e}}{\partial \eta \partial \eta }\frac{\partial \eta }{\partial T} - 1 - 1} \right)\left( {\frac{\partial \eta }{\partial T}} \right)_{{\varvec{\upvarepsilon}}} + \left( {\frac{\partial e}{\partial \eta } - T} \right)\left( {\frac{{\partial^{2} \eta }}{\partial T\partial T}} \right)_{{\varvec{\upvarepsilon}}} } \right] - T\left( {\frac{{\partial \eta^{\text{r}} }}{\partial T}} \right)_{{\varvec{\upvarepsilon}}} \\ & = T\left( {\frac{\partial \eta }{\partial T}} \right)_{{\varvec{\upvarepsilon}}} - T\left( {\frac{{\partial \eta^{\text{r}} }}{\partial T}} \right)_{{\varvec{\upvarepsilon}}} \quad \left( {{\text{where}}{\kern 1pt} {\kern 1pt} :\left( {\frac{\partial e}{\partial \eta }} \right)_{{\varvec{\upvarepsilon}}} = T,\left( {\frac{\partial T}{\partial \eta }} \right)_{{\varvec{\upvarepsilon}}} \left( {\frac{\partial \eta }{\partial T}} \right)_{{\varvec{\upvarepsilon}}} = 1} \right) \\ & = \left( {\frac{\partial e}{\partial \eta }} \right)_{{\varvec{\upvarepsilon}}} \left( {\frac{\partial \eta }{\partial T}} \right)_{{\varvec{\upvarepsilon}}} - \left( {\frac{{\partial e^{\text{r}} }}{{\partial \eta^{\text{r}} }}} \right)_{{\varvec{\upvarepsilon}}} \left( {\frac{{\partial \eta^{\text{r}} }}{\partial T}} \right)_{{\varvec{\upvarepsilon}}} = \left( {\frac{{\partial \left( {e - e^{\text{r}} } \right)}}{\partial T}} \right)_{{\varvec{\upvarepsilon}}} = \frac{\partial \psi }{\partial T}. \\ \end{aligned}$$
(C.1)

Taking advantage of Eqs. (5), (15) and \(\psi = \psi \left( T \right)\), we have

$$C_{\text{q}}^{\text{i}} \dot{T} = \dot{\psi } = \dot{\phi } = {\varvec{K}}^{TT} \cdot {\varvec{X}}_{\text{q}} \cdot {\varvec{X}}_{\text{q}} .$$
(C.2)

Appendix D

Theorem

The first variation of \(\varPi\) (or \(\varPi^{ *}\) ) vanishes if and only if \({\varvec{u}},{\varvec{J}}_{\text{q}}\) (or \({\varvec{\upsigma}},{\kern 1pt} \;T\) ) are the exact solution of the BVP I (or BVP II).

Proof

  1. i.

    Necessity:


    Under \(\delta \varPi = 0\) in its admissible states with Precondition I taken as the constraint conditions, we have

    $$\begin{aligned} \delta \varPi \left( {{\varvec{u}},{\varvec{J}}_{q} } \right) & = \delta E + \delta \varPhi - \delta W = 0 \\ & = \int_{\varOmega } {\left[ {\delta e^{\text{r}} + \delta \left( {{\varvec{\upxi}}_{\text{q}} \cdot {\varvec{X}}_{\text{q}} } \right) - \delta \phi^{ *} - \delta \left( {{\varvec{f}} \cdot {\varvec{u}}} \right)} \right]{\text{d}}V} \\ &\quad - \delta \int_{{\partial \varOmega_{\sigma } }} {{\bar{\varvec{T}}} \cdot {\varvec{u}}{\text{d}}S} + \delta \int_{{\partial \varOmega_{T} }} {\int_{t} {\bar{T}{\varvec{J}}_{\text{q}} \cdot {\varvec{n}}{\text{d}}t} {\text{d}}S} \\ & = \int_{\varOmega } {\left[ {{\varvec{\upsigma}}:\delta {\varvec{\upvarepsilon}} + T\delta \eta^{\text{r}} + {\varvec{X}}_{\text{q}} \cdot \delta {\varvec{\upxi}}_{\text{q}} - {\varvec{f}} \cdot \delta {\varvec{u}}} \right]{\text{d}}V} \\&= - \int_{{\partial \varOmega_{\sigma } }} {{\bar{\varvec{T}}} \cdot \delta {\varvec{u}}{\text{d}}S} + \int_{{\partial \varOmega_{T} }} {\int_{t} {\bar{T}\delta {\varvec{J}}_{\text{q}} \cdot {\varvec{n}}{\text{d}}t} {\text{d}}S} \\ & = \int_{\varOmega } {\left[ {\nabla \cdot \left( {{\varvec{\upsigma}} \cdot \delta {\varvec{u}}} \right) - \nabla \cdot {\varvec{\upsigma}} \cdot \delta {\varvec{u}} - \nabla \cdot \left( {T\delta \int_{t} {{\varvec{J}}_{\text{q}} {\text{d}}t} } \right)} \right.} \\ &\quad \left. { + \nabla T \cdot \delta \int_{t} {{\varvec{J}}_{q} {\text{d}}t} + {\varvec{X}}_{q} \cdot \delta {\varvec{\upxi}}_{q} - {\varvec{f}} \cdot \delta {\varvec{u}}} \right]{\text{d}}V \hfill \\ &\quad - \int_{{\partial \varOmega_{\sigma } }} {{\bar{\varvec{T}}} \cdot \delta {\varvec{u}}{\text{d}}S} + \int_{{\partial \varOmega_{T} }} {\int_{t} {\bar{T}\delta {\varvec{J}}_{\text{q}} \cdot {\varvec{n}}{\text{d}}t} {\text{d}}S} \\ & = \int_{\varOmega } {\left[ { - \left( {\nabla \cdot {\varvec{\upsigma}} + {\varvec{f}}} \right) \cdot \delta {\varvec{u}} + \left( {{\varvec{X}}_{q} + \nabla T} \right) \cdot \int_{t} {\delta {\varvec{J}}_{\text{q}} \cdot {\varvec{n}}{\text{d}}t} } \right]{\text{d}}V} \hfill \\ & \quad + \int_{{\partial \varOmega_{\sigma } }} {\left( {{\varvec{\upsigma}} \cdot {\varvec{n}} - {\bar{\varvec{T}}}} \right) \cdot \delta {\varvec{u}}{\text{d}}S} + \int_{{\partial \varOmega_{T} }} {\int_{t} {\delta {\varvec{J}}_{\text{q}} \cdot {\varvec{n}}{\text{d}}t} \left( {\bar{T} - T} \right){\text{d}}S} . \\ \end{aligned}$$
    (D.1)

    Considering the arbitrariness of \(\delta {\varvec{u}},\delta {\varvec{J}}_{\text{q}} ,\)\(\delta \varPi = 0\) requires the following equations

    $$\left\{ \begin{aligned} \nabla \cdot {\varvec{\upsigma}} + {\varvec{f}} = 0 \\ {\varvec{X}}_{\text{q}} + \nabla T = 0 \\ \end{aligned} \right.\;\left( {{\text{in}}\;\;\varOmega } \right) \quad \left\{ \begin{aligned} {\varvec{\upsigma}} \cdot {\varvec{n}} = {\bar{\varvec{T}}} \\ T = \bar{T} \\ \end{aligned} \right.\;\left( {{\text{on}}\;\;\partial \varOmega } \right),$$
    (D.2)

    i.e. Eqs. (16217)1 and Eqs. (18219)1. Under prescribed Eqs. (1416)1 and Eq. (17)2, Eq. (D.2) can be rewritten as

    $$\left\{ \begin{aligned} \nabla \cdot \left( {{\varvec{C}}:\nabla {\dot{\varvec{u}}}} \right) + \nabla \cdot \left( {{\varvec{\upbeta}}\dot{T}} \right) + {\dot{\varvec{f}}}{ = }0 \hfill \\ C_{\text{q}}^{\text{r}} \dot{T} = T\nabla \cdot \left( {{\varvec{K}}^{TT} \cdot \nabla T} \right) - T{\varvec{\upbeta}}:{\dot{\varvec{\varepsilon }}} \hfill \\ \end{aligned} \right.\;\left( {{\text{in}}\;\;\varOmega } \right),\;\;\;\;\;\;\left\{ \begin{aligned} &{\varvec{\upsigma}} \cdot {\varvec{n}} = {\bar{\varvec{T}}} \hfill \\& T = \bar{T} \hfill \\ \end{aligned} \right.\;\left( {{\text{on}}\;\;\partial \varOmega } \right),$$
    (D.3)

    which is exactly the boundary value problem described by governing equations (Eqs. (20) and (23)) and boundary conditions (Eqs. (18)2 and (19)1), i.e. BVP I.

    Thus, the necessary condition for \(\delta \varPi = 0\) is that \({\varvec{u}},{\varvec{J}}_{\text{q}}\) are the exact solution of the boundary value problem (D.3).

  2. ii.

    Sufficiency:

    When \({\varvec{u}},{\varvec{J}}_{\text{q}}\) are the exact solution of the boundary value problem (D.3), according to Eq. (D.1), we instantly have \(\delta \varPi = 0\), i.e. the fact that \({\varvec{u}},{\varvec{J}}_{\text{q}}\) are the exact solution of BVP I is the sufficient condition for \(\delta \varPi = 0\).

    Similarly, in the admissible states with Precondition II being the constraint conditions, then

    $$\begin{aligned} \hfill \delta \varPi^{ *} \left( {{\varvec{\upsigma}},T} \right) = \int_{\varOmega } {\left\{ {\left[ {{\varvec{\upvarepsilon}} - \frac{1}{2}\left( {\nabla {\varvec{u}} + {\varvec{u}}\nabla } \right)} \right]:\delta {\varvec{\upsigma}} + \int_{t} {\left( {\dot{\eta }^{\text{r}} { + }\nabla \cdot {\varvec{J}}_{q} } \right){\text{d}}t} \delta T} \right\}{\text{d}}V} \\ - \int_{{\partial \varOmega_{u} }} {\left( {{\bar{\varvec{u}}} - {\varvec{u}}} \right) \cdot \delta {\varvec{\upsigma}} \cdot {\varvec{n}}{\text{d}}S} - \int_{{\partial \varOmega_{{J_{\text{q}} }} }} {\int_{t} {\left( {{\varvec{J}}_{\text{q}} \cdot {\varvec{n}} - \bar{J}_{q} } \right){\text{d}}t\delta } T{\text{d}}S} . \\ \end{aligned}$$
    (D.4)

    Hence, the fact that \({\varvec{\upsigma}},{\kern 1pt} \;T\) are the exact solution of the BVP II is the necessary and sufficient condition for \(\delta \varPi^{ *} = 0\).

    To sum up, the first variation of \(\varPi\) (or \(\varPi^{ *}\)) vanishes if and only if \({\varvec{u}},{\varvec{J}}_{\text{q}}\) (or \({\varvec{\upsigma}},{\kern 1pt} \;T\)) are the exact solution of the BVP I, i.e. Eq. (D.3) (or BVP II). Thus, the theorem is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, JH., Zhong, Z. & Jiang, CY. Coupled thermoelastic theory and associated variational principles based on decomposition of internal energy. Acta Mech. Sin. 36, 107–115 (2020). https://doi.org/10.1007/s10409-019-00900-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00900-y

Keywords

Navigation