Skip to main content
Log in

Geometric and material nonlinearities of sandwich beams under static loads

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A new theory developed from extended high-order sandwich panel theory (EHSAPT) is set up to assess the static response of sandwich panels by considering the geometrical and material nonlinearities simultaneously. The geometrical nonlinearity is considered by adopting the Green–Lagrange-type strain for the face sheets and core. The material nonlinearity is included as a piecewise function matched to the experimental stress–strain curve using a polynomial fitting technique. A Ritz technique is applied to solve the governing equations. The results show that the stress stiffening feature is well captured in the geometric nonlinear analysis. The effect of the geometric nonlinearity in the face sheets on the displacement response is more significant when the stiffness ratio of the face sheets to the core is large. The geometric nonlinearity decreases the shear stress and increases the normal stress in the sandwich core. By comparison with open literature and finite element simulations, the present nonlinear EHSAPT is shown to be sufficiently precise for estimating the nonlinear static response of sandwich beams by considering the geometric and material nonlinearities simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Frostig, Y., Baruch, M., Vilnay, O., et al.: High-order theory for sandwich-beam behavior with transversely flexible core. J. Eng. Mech. 118, 1026–1043 (1992)

    Article  Google Scholar 

  2. Phan, C.N., Frostig, Y., Kardomateas, G.A.: Analysis of sandwich beams with a compliant core and with in-plane rigidity—extended high-order sandwich panel theory versus elasticity. J. Appl. Mech. 79, 041001 (2012)

    Article  Google Scholar 

  3. Phan, C.N., Kardomateas, G.A., Frostig, Y.: Blast response of a sandwich beam/wide plate based on the extended high-order sandwich panel theory and comparison with elasticity. J. Appl. Mech. 80, 061005 (2013)

    Article  Google Scholar 

  4. Yuan, Z., Kardomateas, G.A., Frostig, Y.: Finite element formulation based on the extended high-order sandwich panel theory. AIAA J. 53, 3006–3015 (2015)

    Article  Google Scholar 

  5. Jedari Salami, S.: Low velocity impact response of sandwich beams with soft cores and carbon nanotube reinforced face sheets based on Extended High Order Sandwich Panel Theory. Aerosp. Sci. Technol. 66, 165–176 (2017)

    Article  Google Scholar 

  6. Yuan, Z., Kardomateas, G.A.: Nonlinear dynamic response of sandwich wide panels. Int. J. Solids Struct. 148–149, 110–121 (2018)

    Article  Google Scholar 

  7. Jedari Salami, S.: Dynamic extended high order sandwich panel theory for transient response of sandwich beams with carbon nanotube reinforced face sheets. Aerosp. Sci. Technol. 56, 56–69 (2016)

    Article  Google Scholar 

  8. Phan, C.N., Bailey, N.W., Kardomateas, G.A., et al.: Wrinkling of sandwich wide panels/beams based on the extended high-order sandwich panel theory: formulation, comparison with elasticity and experiments. Arch. Appl. Mech. 82, 1585–1599 (2012)

    Article  Google Scholar 

  9. Shu, C., Hou, S.: Theoretical prediction on corrugated sandwich panels under bending loads. Acta. Mech. Sin. 34, 925–935 (2018)

    Article  MathSciNet  Google Scholar 

  10. Liu, T., Deng, Z.C., Lu, T.J.: Structural modeling of sandwich structures with lightweight cellular cores. Acta. Mech. Sin. 23, 545–559 (2007)

    Article  Google Scholar 

  11. Su, P., Han, B., Zhao, Z., et al.: Three-point bending of honeycomb sandwich beams with facesheet perforations. Acta. Mech. Sin. 34, 667–675 (2018)

    Article  Google Scholar 

  12. Li, F., Song, Z., Sun, C.: Aeroelastic properties of sandwich beam with pyramidal lattice core considering geometric nonlinearity in the supersonic airflow. Acta Mech. Solida Sin. 28, 639–646 (2015)

    Article  Google Scholar 

  13. Sokolinsky, V., Frostig, Y.: Branching behavior in the nonlinear response of sandwich panels with a transversely flexible core. Int. J. Solids Struct. 37(40), 5745–5772 (2000)

    Article  Google Scholar 

  14. Sokolinsky, V.S., Shen, H., Vaikhanski, L., et al.: Experimental and analytical study of nonlinear bending response of sandwich beams. Compos. Struct. 60, 219–229 (2003)

    Article  Google Scholar 

  15. Hohe, J., Librescu, L.: Structures: a nonlinear theory for doubly curved anisotropic sandwich shells with transversely compressible core. Int. J. Solids Struct. 40, 1059–1088 (2003)

    Article  Google Scholar 

  16. Frostig, Y., Thomsen, O.T., Sheinman, I.: On the non-linear high-order theory of unidirectional sandwich panels with a transversely flexible core. Int. J. Solids Struct. 42, 1443–1463 (2005)

    Article  Google Scholar 

  17. Salami, S.J., Sadighi, M., Shakeri, M.: Geometrically nonlinear extended high order analysis for sandwich beams based on elastic–plastic core shear behavior. Aerosp. Sci. Technol. 39, 523–537 (2014)

    Article  Google Scholar 

  18. Salami, S.J., Sadighi, M., Shakeri, M.: Improved extended high order analysis of sandwich beams with a bilinear core shear behavior. J. Sandwich Struct. Mater. 16, 633–668 (2014)

    Article  Google Scholar 

  19. Moita, J.S., Araújo, A.L., Soares, C.M.M., et al.: Geometrically nonlinear analysis of sandwich structures. Compos. Struct. 156, 135–144 (2016)

    Article  Google Scholar 

  20. Yuan, Z., Kardomateas, G.A., Frostig, Y.: Geometric nonlinearity effects in the response of sandwich wide panels. J. Appl. Mech. 83, 091008 (2016)

    Article  Google Scholar 

  21. Yuan, Z., Kardomateas, G.A.: Nonlinear stability analysis of sandwich wide panels—part II: postbuckling response. J. Appl. Mech. 85, 081007 (2018)

    Article  Google Scholar 

  22. Yuan, Z., Kardomateas, G.A.: Nonlinear stability analysis of sandwich wide panels—Part I: buckling behavior. J. Appl. Mech. 85, 081006 (2018)

    Article  Google Scholar 

  23. Xie, Z.Y., Yu, J.L., Zheng, Z.J.: A plastic indentation model for sandwich beams with metallic foam cores. Acta. Mech. Sin. 27, 963–966 (2011)

    Article  Google Scholar 

  24. Rezaeifard, M., Salami, S.J., Dehkordi, M.B., et al.: A new nonlinear model for studying a sandwich panel with thin composite faces and elastic–plastic core. Thin Walled Struct. 107, 119–137 (2016)

    Article  Google Scholar 

  25. Schwarts-Givli, H., Frostig, Y.: High-order behavior of sandwich panels with a bilinear transversely flexible core. Compos. Struct. 53, 87–106 (2001)

    Article  Google Scholar 

  26. Jedari Salami, S., Dariushi, S., Sadighi, M., et al.: An advanced high-order theory for bending analysis of moderately thick faced sandwich beams. Eur. J. Mech. A. Solids 56, 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  27. Nia, A.A., Sadeghi, M.: The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading-experimental study. Mater. Des. 31, 1216–1230 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 11432004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linzhi Wu.

Appendix

Appendix

$$A = {\text{diag}}\left( {\begin{array}{*{20}c} {\chi_{1} } & {\chi_{1} } & {\chi_{1} } & {\chi_{1} } & {\chi_{3} } & {\chi_{4} } & {\chi_{3} } & {\chi_{4} } & {\chi_{3} } & {\chi_{4} } \\ \end{array} } \right),$$
$$B = {\text{diag}}\left( {\begin{array}{*{20}c} {\chi_{2} } & {\chi_{2} } & {\chi_{2} } & {\chi_{2} } & {\chi_{5} } & {\chi_{6} } & {\chi_{5} } & {\chi_{4} } & {\chi_{6} } & {\chi_{6} } \\ \end{array} } \right),$$

with

$$\begin{aligned} & \chi_{1} = \frac{{x - x_{i + 1} }}{{x_{i} - x_{i + 1} }},\chi_{2} = \frac{{x - x_{i} }}{{x_{i + 1} - x_{i} }},\\ & \chi_{3} = \left( {1 + 2\frac{{x - x_{i} }}{{x_{i + 1} - x_{i} }}} \right)\left( {\frac{{x - x_{i + 1} }}{{x_{i} - x_{i + 1} }}} \right)^{2} , \end{aligned}$$
$$\begin{aligned} & {\chi} _{4} = \left( {x - x_{i} } \right)\left( {\frac{{x - x_{{i + 1}} }}{{x_{i} - x_{{i + 1}} }}} \right)^{2}, \\ & {\chi} _{5} = \left( {1 + 2\frac{{x - x_{{i + 1}} }}{{x_{i} - x_{{i + 1}} }}} \right)\left( {\frac{{x - x_{i} }}{{x_{{i + 1}} - x_{i} }}} \right)^{2}, \\ & {\chi} _{6} = \left( {x - x_{{i + 1}} } \right)\left( {\frac{{x - x_{i} }}{{x_{{i + 1}} - x_{i} }}} \right)^{2}\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, G., Jin, Y. & Wu, L. Geometric and material nonlinearities of sandwich beams under static loads. Acta Mech. Sin. 36, 97–106 (2020). https://doi.org/10.1007/s10409-019-00899-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00899-2

Keywords

Navigation