Skip to main content
Log in

Experimental and numerical study of the effect of pulsatile flow on wall displacement oscillation in a flexible lateral aneurysm model

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This study experimentally and numerically investigated the effect of pulsatile flow of different frequencies and outflow resistance on wall deformation in a lateral aneurysm. A method for constructing a flexible aneurysm model was developed, and a self-designed piston pump was used to provide the pulsatile flow conditions. A fluid–structure interaction simulation was applied for comparison with and analysis of experimental findings. The maximum wall displacement oscillation increased as the pulsation frequency and outflow resistance increased, especially at the aneurysm dome. There is an obvious circular motion of the vortex center accompanying the periodic inflow fluctuation, and the pressure at the aneurysm dome at peak flow increased as the pulsatile flow frequency and terminal flow resistance increased. These results could explain why abnormal blood flow with high frequency and high outflow resistance is one of the risk factors for aneurysm rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Schievink, W.I.: Intracranial aneurysms. N. Engl. J. Med. 336, 28–40 (1997)

    Article  Google Scholar 

  2. Liou, T.M., Liou, S.N.: A review on in vitro studies of hemodynamic characteristics in terminal and lateral aneurysm models. Proc. Natl. Sci. Counc. Republ. China Part B Life Sci. 23, 133–148 (1999)

    Google Scholar 

  3. Macdonald, D.J., Finlay, H.M., Canham, P.B.: Directional wall strength in saccular brain aneurysms from polarized light microscopy. Ann. Biomed. Eng. 28, 533–542 (2000)

    Article  Google Scholar 

  4. Taylor, C.L., Yuan, Z., Selman, W.R., et al.: Cerebral arterial aneurysm formation and rupture in 20,767 elderly patients: hypertension and other risk factors. J. Neurosurg. 83, 812–819 (1995)

    Article  Google Scholar 

  5. Inci, S., Spetzler, R.F.: Intracranial aneurysms and arterial hypertension: a review and hypothesis. Surg. Neurol. 53, 530–542 (2000)

    Article  Google Scholar 

  6. Kety, S.S., King, B.D., Horvath, S.M., et al.: The effects of an acute reduction in blood pressure by means of differential spinal sympathetic block on the cerebral circulation of hypertensive patients. J. Clin. Invest. 29, 402–407 (1950)

    Article  Google Scholar 

  7. Liang, F., Fukasaku, K., Liu, H., et al.: A computational model study of the influence of the anatomy of the circle of Willis on cerebral hyperperfusion following carotid artery surgery. Biomed. Eng. Online 10, 84 (2011)

    Article  Google Scholar 

  8. Ji, C.J., He, Y.: A modeling study of blood flow and oxygen transport in the circle of Willis. Chin. J. Theor. Appl. Mech. 3, 591–599 (2012). (In Chinese)

    Google Scholar 

  9. Chen, J., Wang, S., Ding, G., et al.: Patient-specific blood dynamic simulations in assessing endovascular occlusion of intracranial aneurysms. J. Hydrodyn. 21, 271–276 (2009)

    Article  Google Scholar 

  10. Shojima, M., Oshima, M., Takagi, K., et al.: Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35, 2500–2505 (2004)

    Article  Google Scholar 

  11. Torii, R., Oshima, M., Kobayashi, T., et al.: Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput. Mech. 38, 482–490 (2006)

    Article  Google Scholar 

  12. Torii, R., Oshima, M., Kobayashi, T., et al.: Influence of wall elasticity in patient-specific hemodynamic simulations. Comput. Fluids 36, 160–168 (2007)

    Article  Google Scholar 

  13. Torii, R., Oshima, M., Kobayashi, T., et al.: Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput. Meth. Appl. Mech. Eng. 198, 3613–3621 (2009)

    Article  MathSciNet  Google Scholar 

  14. Ahmed, S., Sutalo, I.D., Kavnoudias, H., et al.: Fluid structure interaction modelling of a patient specific cerebral aneurysm: effect of hypertension and modulus of elasticity. In: 16th Australasian Fluid Mechanics Conference, Crown Plaza, Gold Coast, Austrialia, December 2–7 (2007)

  15. Valencia, A., Torres, F.: Effects of hypertension and pressure gradient in a human cerebral aneurysm using fluid structure interaction simulations. J. Mech. Med. Biol. 17, 1750018 (2017)

    Article  Google Scholar 

  16. Shamloo, A., Nejad, M.A., Saeedi, M.: Fluid-structure interaction simulation of a cerebral aneurysm: effects of endovascular coiling treatment and aneurysm wall thickening. J. Mech. Behav. Biomed. Mater. 74, S1751616117302096 (2017)

    Article  Google Scholar 

  17. Long, Y., Yu, H., Zhuo, Z., et al.: A geometric scaling model for assessing the impact of aneurysm size ratio on hemodynamic characteristics. Biomed. Eng. Online 13, 17 (2014)

    Article  Google Scholar 

  18. Chen, J., Wang, S., Ding, G., et al.: The effect of aneurismal-wall mechanical properties on patient-specific hemodynamic simulations: two clinical case reports. Acta Mech. Sin. 25, 677–688 (2009)

    Article  Google Scholar 

  19. Ahmed, S., Šutalo, I.D., Kavnoudias, H., et al.: Numerical investigation of hemodynamics of lateral cerebral aneurysm following coil embolization. Eng. Appl. Comput. Fluid Mech. 5, 329–340 (2011)

    Google Scholar 

  20. Chodzyński, K.J., Eker, O.F., Vanrossomme, A.E., et al.: Does the gravity orientation of saccular aneurysms influence hemodynamics? An experimental study with and without flow diverter stent. J. Biomech. 49, 3808–3814 (2016)

    Article  Google Scholar 

  21. Usmani, A.Y., Muralidhar, K.: Pulsatile flow in a compliant stenosed asymmetric model. Exp. Fluids 57, 186 (2016)

    Article  Google Scholar 

  22. Fahy, P., Delassus, P., Mccarthy, P., et al.: An in vitro assessment of the cerebral hemodynamics through three patient specific circle of Willis geometries. J. Biomech. Eng. Trans. ASME. 136, 011007 (2014)

    Article  Google Scholar 

  23. Alastruey, J., Parker, K., Peiro, J.S., et al.: Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40, 1794–1805 (2007)

    Article  Google Scholar 

  24. Monson, K.L., Goldsmith, W., Barbaro, N.M., et al.: Significance of source and size in the mechanical response of human cerebral blood vessels. J. Biomech. 38, 737–744 (2005)

    Article  Google Scholar 

  25. Tateshima, S., Murayama, Y., Villablanca, J.P., et al.: In vitro measurement of fluid induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke 34, 187–192 (2003)

    Article  Google Scholar 

  26. Nichols, W.O., Rourke, M., Vlachopoulos, C.: McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. CRC Press, Boca Raton (2011)

    Google Scholar 

  27. Lu, G., Huang, L., Zhang, X.L., et al.: Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation. Am. J. Neuroradiol. 32, 1255–1261 (2011)

    Article  Google Scholar 

  28. Yu, H., Huang, G.P., Ludwig, B.R., et al.: An in-vitro flow study using an artificial circle of Willis model for validation of an existing one-dimensional numerical model. Ann. Biomed. Eng. 47, 1023–1037 (2019)

    Article  Google Scholar 

  29. Mu, L.Z., Shao, H.W., He, Y., et al.: Construction of anatomically accurate finite element models of the human hand and a rat kidney. J. Mech. Med. Biol. 11, 1141–1164 (2011)

    Article  Google Scholar 

  30. Yu, Y., Liu, Y., Chen, Y.: Vortex dynamics behind a self-oscillating inverted flag placed in a channel flow: time-resolved particle image velocimetry measurements. Phys. Fluids 29, 125104 (2017)

    Article  Google Scholar 

  31. Ouyang, C.X., Zhou, F., Wang, W., et al.: Radial tensile properties of human femoral artery. J. Clin. Rehabil. Tissue Eng. Res. 12, 89–93 (2008). (In Chinese)

    Google Scholar 

  32. Yang, L.J., Xu, W.M., Ma, L.J., et al.: 8621 cases of the recruits recheck electrocardiogram inspection analysis. J. Electrocardiogram 2, 202–204 (2013). (Electronic Edition in Chinese)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grants 11602053 and 51576033) and the Fundamental Research Funds for the Central Universities (Grant DUT18JC23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Z. Mu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, L.Z., Li, X.Y., Chi, Q.Z. et al. Experimental and numerical study of the effect of pulsatile flow on wall displacement oscillation in a flexible lateral aneurysm model. Acta Mech. Sin. 35, 1120–1129 (2019). https://doi.org/10.1007/s10409-019-00893-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00893-8

Keywords

Navigation