Skip to main content
Log in

Analytical approach for the design of convoluted air suspension and experimental validation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

An improved analytical design to investigate the static stiffness of a convoluted air spring is developed and presented in this article. An air spring provides improved ride comfort by achieving variable volume at various strokes of the suspension. An analytical relation is derived to calculate the volume and the rate of change in the volume of the convoluted bellow with respect to various suspension heights. This expression is used in the equation to calculate the variable stiffness of the bellow. The obtained analytical characteristics are validated with a detailed experiment to test the static vertical stiffness of the air spring. The convoluted air bellow is tested in an Avery spring-testing apparatus for various loads. The bellow is modeled in the ABAQUS environment to perform finite element analysis (FEA) to understand and visualize the deflection of the bellow at various elevated internal pressures and external loads. The proposed air spring model is a fiber-reinforced rubber bellow enclosed between two metal plates. The Mooney–Rivlin material model was used to model the hyperelastic rubber material for FEA. From the results, it is observed that the experimental and analytical results match with a minor error of 7.54%. The derived relations and validations would provide design guidance at the developmental stage of air bellows. These expressions would also play a major role in designing an effective active air suspension system by accurately calculating the required stiffness at various loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tajima, J., Momiyama, F., Yuhara, N.: A new solution for two-bag air suspension system with leaf spring for heavy-duty vehicle. Veh. Syst. Dyn. 44(2), 107–138 (2006)

    Article  Google Scholar 

  2. Hostens, I., Ramon, H.: Descriptive analysis of combine cabin vibrations and their effect on the human body. J. Sound Vib. 266(3), 453–464 (2003)

    Article  Google Scholar 

  3. Li, W., Chen, Y., Zhang, S., et al.: Damping characteristic analysis and experiment of air suspension with auxiliary chamber. IFAC-PapersOnLine 51(17), 166–172 (2018)

    Article  Google Scholar 

  4. Eskandary, P.K., Khajepour, A., Wong, A., et al.: Analysis and optimization of air suspension system with independent height and stiffness tuning. Int. J. Automot. Technol. 17(5), 807–816 (2016)

    Article  Google Scholar 

  5. Liu, H., Lee, J.C.: Model development and experimental research on an air spring with auxiliary reservoir. Int. J. Automot. Technol. 12(6), 839–847 (2011)

    Article  Google Scholar 

  6. Li, F.X., Yang, W.M., Ding, Y.M.: Simulation of static test of air-spring. Adv. Mater. Res. 11, 713–716 (2006)

    Article  Google Scholar 

  7. Oman, S., Nagode, M.: On the influence of the cord angle on air-spring fatigue life. Eng. Fail. Anal. 27, 61–73 (2013)

    Article  Google Scholar 

  8. Ren, J., Cheng, C.: Finite elastic torsional instability of incompressible thermo-hyperelastic cylinder. Acta Mech. Sin. 22(2), 156–161 (2006)

    Article  Google Scholar 

  9. Khatam, H., Liu, Q., Ravi-Chandar, K.: Dynamic tensile characterization of pig skin. Acta Mech. Sin. 30(2), 125–132 (2014)

    Article  Google Scholar 

  10. Huang, Z.M., Liu, L.: Assessment of composite failure and ultimate strength without experiment on composite. Acta Mech. Sin. 30(4), 569–588 (2014)

    Article  Google Scholar 

  11. Holtz, M.W., van Niekerk, J.L.: Modelling and design of a novel air-spring for a suspension seat. J. Sound Vib. 329(21), 4354–4366 (2010)

    Article  Google Scholar 

  12. Shangguan, W.B., Shui, Y., Rakheja, S.: Kineto-dynamic design optimisation for vehicle specific seat-suspension systems. Veh. Syst. Dyn. 55(11), 1643–1664 (2017)

    Article  Google Scholar 

  13. Sun, X., Yuan, C., Cai, Y., et al.: Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model. Mech. Syst. Signal Process. 94, 94–110 (2017)

    Article  Google Scholar 

  14. Gao, Z.P., Nan, J.R., Liu, L., et al.: Research on air suspension control system based on fuzzy control. Energy Proc. 105, 2653–2659 (2017)

    Article  Google Scholar 

  15. Sun, X., Cai, Y., Chen, L., et al.: Vehicle height and posture control of the electronic air suspension system using the hybrid system approach. Veh. Syst. Dyn. 54(3), 328–352 (2016)

    Article  Google Scholar 

  16. Ma, X., Wong, P.K., Zhao, J., et al.: Design and testing of a nonlinear model predictive controller for ride height control of automotive semi-active air suspension systems. IEEE Access 6, 63777–63793 (2018)

    Article  Google Scholar 

  17. Zhang, M., Luo, S., Gao, C., et al.: Research on the mechanism of a newly developed levitation frame with mid-set air spring. Veh. Sys. Dyn. 56, 1797–1816 (2018)

    Article  Google Scholar 

  18. Li, Z., Ju, L., Jiang, H., et al.: Imitated skyhook control of a vehicle laterally interconnected air suspension. Int. J. Veh. Des. 74(3), 204–230 (2017)

    Article  Google Scholar 

  19. Lee, S.J.: Development and analysis of an air spring model. Int. J. Automot. Technol. 11(4), 471–479 (2010)

    Article  Google Scholar 

  20. Gavriloski, V., Jovanova, J.: Dynamic behaviour of an air spring element. J. Mach. Technol. Mater. 4(5), 24–27 (2010)

    Google Scholar 

  21. Toyofuku, K., Yamada, C., Kagawa, T., et al.: Study on dynamic characteristic analysis of air spring with auxiliary chamber. JSAE Rev. 20(3), 349–355 (1999)

    Article  Google Scholar 

  22. Zhu, H., Yang, J., Zhang, Y., et al.: Nonlinear dynamic model of air spring with a damper for vehicle ride comfort. Nonlinear Dyn. 89(2), 1545–1568 (2017)

    Article  Google Scholar 

  23. Li, X., He, Y., Liu, W., et al.: Research on the vertical stiffness of a rolling lobe air spring. J. Rail Rapid Transit. 230(4), 1172–1183 (2016)

    Article  Google Scholar 

  24. Eitzen, A., Flamm, M., Steinweger, T., et al.: On the lifetime prediction of rolling lobe air springs. Eng. Fail. Anal. 94, 313–326 (2018)

    Article  Google Scholar 

  25. Xin, F., Lu, T.J.: Acoustomechanical constitutive theory for soft materials. Acta Mech. Sin. 32(5), 828–840 (2016)

    Article  MathSciNet  Google Scholar 

  26. Chen, Q., Sun, F., Li, Z.Y., et al.: Nonlinear mechanics of a ring structure subjected to multi-pairs of evenly distributed equal radial forces. Acta Mech. Sin. 33(5), 942–953 (2017)

    Article  MathSciNet  Google Scholar 

  27. Xu, Q., Liu, J.: An improved dynamic model for a silicone material beam with large deformation. Acta Mech. Sin. 34(4), 744–753 (2018)

    Article  MathSciNet  Google Scholar 

  28. Soares, R.M., Gonçalves, P.B.: Nonlinear vibrations and instabilities of a stretched hyperelastic annular membrane. Int. J. Solids Struct. 49, 514–526 (2012)

    Article  Google Scholar 

  29. Li, H., Guo, K., Chen, S., et al.: Design of stiffness for air spring based on ABAQUS. Math. Probl. Eng. 2013, 528218 (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokul Prassad Sreenivasan.

Appendices

Appendix 1: abbreviations

\( \dot{m} \) :

Mass flow rate

\( \rho \) :

Air density

\( V \) :

Air volume

\( P \) :

Air pressure

\( n \) :

Number of moles of gas

\( T \) :

Temperature

\( h \) :

Height of bellow at a particular instance

\( \vartheta \) :

Change in volume with height

\( F \) :

Force acting on bellow

\( A_{\text{eff}} \) :

Effective area

\( K_{s} \) :

Bellow stiffness

\( r_{r} \) :

Radius of bellow

\( r_{s} \) :

Sagitta of circular segment

\( r_{c} \) :

Bellow mouth radius

\( L_{a} \) :

Arc length of circular segment

\( R \) :

Arc radius of the segment

\( W \) :

Strain energy density function

Appendix 2: Taylor’s series expansion of Eq. (3)

Applying Taylor’s series to Eq. (3) to obtain a linearized equation, we obtain:

$$\begin{aligned} \dot{P}_{s} &= \dot{P}_{se} + \frac{{{\text{d}}\dot{P}_{s} }}{{{\text{d}}P_{s} }}|_{e} \left( {P_{s} - P_{se} } \right) + \frac{{{\text{d}}\dot{P}_{s} }}{{{\text{d}}V_{s} }}|_{e} \left( {V_{s} - V_{se} } \right)\\ &\quad + \frac{{{\text{d}}\dot{P}_{s} }}{{{\text{d}}\dot{V}_{s} }}|_{e} \left( {\dot{V}_{s} - \dot{V}_{se} } \right) + \frac{{{\text{d}}\dot{P}_{s} }}{{{\text{d}}\dot{m}}}|_{e} \left( {\dot{m} - \dot{m}_{e} } \right).\end{aligned} $$
(A1)

The subscript e indicates evaluation at equilibrium conditions where

$$ P_{se} = \dot{m}_{e} = \dot{V}_{se} = 0. $$
(A2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreenivasan, G.P., Keppanan, M.M. Analytical approach for the design of convoluted air suspension and experimental validation. Acta Mech. Sin. 35, 1093–1103 (2019). https://doi.org/10.1007/s10409-019-00880-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00880-z

Keywords

Navigation