Skip to main content
Log in

Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Owing to the increasing demand for harvesting energy from environmental vibration for use in self-powered electronic applications, cantilever-based vibration energy harvesting has attracted considerable interest from various parties and has become one of the most common approaches to converting redundant mechanical energy into electrical energy. As the output voltage produced from a piezoelectric material depends largely on the geometric shape and the size of the beam, there is a need to model and compare the performance of cantilever beams of differing geometries. This paper presents the study of strain distribution in various shapes of cantilever beams, including a convex and concave edge profile elliptical beam that have not yet been discussed in any prior literature. Both analytical and finite-element models are derived and the resultant strain distributions in the beam are computed based on a MATLAB solver and ANSYS finite-element analysis tools. An optimum geometry for a vibration-based energy harvesting system is verified. Finally, experimental results comparing the power density for triangular and rectangular piezoelectric beams are also presented to validate the findings of the study, and the claim, as suggested in the literature, is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tang, L., Yang, Y., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21, 1867–1897 (2010). doi:10.1177/1045389X10390249

    Article  Google Scholar 

  2. Meninger, S., Mur-Miranda, J.O., Amirtharajah, R., et al.: Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1, 64–76 (2001)

  3. Ooi, B.L., Gilbert, J.M.: Design of wideband vibration-based electromagnetic generator by means of dual-resonator. Sens. Actuators A 213, 9–18 (2014). doi:10.1016/j.sna.2014.03.037

    Article  Google Scholar 

  4. Wang, L., Yuan, F.G.: Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 17, 45009 (2008)

    Article  Google Scholar 

  5. Wang, W., Huang, R.J., Huang, C.J., et al.: Energy harvester array using piezoelectric circular diaphragm for rail vibration. Acta Mech. Sin. 30, 884–888 (2015). doi:10.1007/s10409-014-0115-9

  6. Priya, S., Inman, D.J.: Energy Harvesting Technologies. Springer, New York (2009). doi:10.1007/978-0-387-76464-1

    Book  Google Scholar 

  7. Hu, H., Xue, H., Hu, Y.: A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1177 (2007). doi:10.1109/TUFFC.2007.371

  8. Jeon, Y., Sood, R., Jeong, J.H., et al.: MEMS power generator with transverse mode thin film PZT. Sens. Actuators A 122, 16–22 (2005). doi:10.1016/j.sna.2004.12.032

  9. Karami, M.A., Inman, D.J.: Parametric study of zigzag microstructure for vibrational energy harvesting. J. Microelectromech. Syst. 21, 145–160 (2012). doi:10.1109/JMEMS.2011.2171321

    Article  Google Scholar 

  10. Shindo, Y., Narita, F.: Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters. Int. J. Mech. Mater. Des. 10, 305–311 (2014). doi:10.1007/s10999-014-9247-0

    Article  Google Scholar 

  11. Roundy, S., Leland, E.S., Baker, J., et al.: Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 4, 28–36 (2005). doi:10.1109/MPRV.2005.14

    Article  Google Scholar 

  12. Jiang, S., Li, X., Guo, S., et al.: Performance of a piezoelectric bimorph for scavenging vibration energy. Acta Mech. Solida Sin. 20, 296 (2005)

    Google Scholar 

  13. Ly, R., Rguiti, M., Dastorg, S., et al.: Modeling and characterization of piezoelectric cantilever bending sensor for energy harvesting. Sens. Actuators A 168(1), 95–100 (2011). doi:10.1016/j.sna.2011.04.020

    Article  Google Scholar 

  14. Pan, C., Liu, Z., Chen, Y.: Study of broad bandwidth vibrational energy harvesting system with optimum thickness of PET substrate. Curr. Appl. Phys. 12, 684 (2012). doi:10.1016/j.cap.2011.10.005

    Article  Google Scholar 

  15. Shen, H., Ji, H., Qiu, J., et al.: Adaptive synchronized switch harvesting: a new piezoelectric energy harvesting scheme for wideband vibrations. Sens. Actuators A 226, 21–36 (2015). doi:10.1016/j.sna.2015.02.008

  16. Thein, C.K., Ooi, B.L., Liu, J.S., et al.: Modelling and optimisation of a bimorph piezoelectric cantilever beam in an energy harvesting application. J. Eng. Sci. Technol. 11, 212–227 (2016)

  17. Muthalif, A.G., Nordin, N.D.: Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech. Syst. Signal Process. 54–55, 417–426 (2015). doi:10.1016/j.ymssp.2014.07.014

    Article  Google Scholar 

  18. Friswell, M.I., Adhikari, S.: Sensor shape design for piezoelectric cantilever beams to harvest vibration energy. J. Appl. Phys. 108, 014901 (2010). doi:10.1063/1.3457330

    Article  Google Scholar 

  19. Basari, A.A., Awaji, S., Wang, S., et al.: Shape effect of piezoelectric energy harvester on vibration power generation. J. Power Energy Eng. 02, 117–124 (2014). doi:10.4236/jpee.2014.29017

    Article  Google Scholar 

  20. Ayed, S.B., Najar, F., Abdelkefi, A.: Shape improvement for piezoelectric energy harvesting applications. In: 2009 3rd International Conference on Signals, Circuits and Systems (SCS), IEEE, 1–6 (2009). doi:10.1109/ICSCS.2009.5412553

  21. Mateu, L., Moll, F.: Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J. Intell. Mater. Syst. Struct. 16, 835–845 (2005). doi:10.1177/1045389X05055280

    Article  Google Scholar 

  22. Roundy, S.: Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. [Ph.D. Dissertation], University of California, Berkeley (2003)

  23. Benham, P.P., Crawford, R.J., Armstrong, C.G.: Mechanics of Engineering Materials, 2nd edn. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  24. Negahban, M.: Pure Bending. Retrieved from http://emweb.unl.edu/NEGAHBAN/Em325/11-Bending/Bending.htm (2000). Accessed 29 March 2016

Download references

Acknowledgments

The authors would like to thank all the involved institutions of higher learning, including the University of Hull and Universiti Teknologi Petronas for their facilities and equipment support. This research was supported by the Fundamental Research Grant Scheme FRGS/1/2014/TK03/QUEST/03/1 from the Ministry of Education (MoE) Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Ooi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, B.L., Gilbert, J.M. & Aziz, A.R.A. Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications. Acta Mech. Sin. 32, 670–683 (2016). https://doi.org/10.1007/s10409-016-0557-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0557-3

Keywords

Navigation