Skip to main content
Log in

Three dimensional simulations of penetrative convection in a porous medium with internal heat sources

  • Research Paper
  • Fluid Mechanics
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The problem of penetrative convection in a fluid saturated porous medium heated internally is analysed. The linear instability theory and nonlinear energy theory are derived and then tested using three dimensions simulation. Critical Rayleigh numbers are obtained numerically for the case of a uniform heat source in a layer with two fixed surfaces. The validity of both the linear instability and global nonlinear energy stability thresholds are tested using a three dimensional simulation. Our results show that the linear threshold accurately predicts the onset of instability in the basic steady state. However, the required time to arrive at the basic steady state increases significantly as the Rayleigh number tends to the linear threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veronis, G.: Penetrative convection. J. Astrophys 137, 641–63 (1963)

    Article  MATH  Google Scholar 

  2. Carr, M.: Penetrative convection in a superposed porousmedium-fluid layer via internal heating. J. Fluid Mech. 509, 305–329 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carr, M., Putter, S.D.: Penetrative convection in a horizontally isotropic porous layer. Continuum Mech. Thermodyn. 15, 33–43 (2003)

    Article  MATH  Google Scholar 

  4. Carr, M., Straughan, B.: Penetrative convection in a fluid overlying a porous layer. Advances in Water Resources 26, 263–276 (2003)

    Article  Google Scholar 

  5. Chasnov, J.R., Tse, K.L.: Turbulent penetrative convection with an internal heat source. Fluid Dyn. Res. 28, 397–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hill, A.A.: Penetrative convection induced by the absorption of radiation with a nonlinear internal heat source. Dyn. Atmos. Ocean 38, 57–67 (2004)

    Article  Google Scholar 

  7. Capone, F., Gentile, M., Hill, A.A.: Anisotropy and symmetry in porous media convection. Acta Mech. 208, 205–214 (2009)

    Article  MATH  Google Scholar 

  8. Capone, F., Gentile, M., Hill, A.A.: Penetrative convection via internal heating in anisotropic porous media. Mech. Research Communications 37, 441–444 (2010)

    Article  MATH  Google Scholar 

  9. Capone, F., Gentile, M., Hill, A.A.: Penetrative convection in anisotropic porous media with variable permeability. Acta Mech 216, 49–58 (2011)

    Article  MATH  Google Scholar 

  10. Capone, F., Gentile, M., Hill, A.A.: Double — diffusive penetrative convection simulated via internal heating in an anisotropic porous layer with throughflow. Int. J. Heat Mass Transfer 54, 1622–1626 (2011)

    Article  MATH  Google Scholar 

  11. Straughan, B.: Stability andWaveMotion in Porous Media. Series in Applied Mathematical Sciences, Volume 165. Springer (2008)

    Google Scholar 

  12. Straughan, B., Walker, D.W.: Anisotropic porous penetrative convection. Proc. Roy. Soc. London A 452, 97–115 (1996)

    Article  MATH  Google Scholar 

  13. Straughan, B., Walker, D.W.: Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems. J. Computational Phys. 127, 128–141 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tse, K.L., Chasnov, J.R., A Fourier-Hermite pseudo spectral method for penetrative convection. J. Comput. Phys. 142, 489–505 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhang, K.K., Schubert, G.: From penetrative convection to teleconvection. Astrophys. J. 572, 461–476 (2002)

    Article  Google Scholar 

  16. Ames, K.A., Cobb, S.S.: Penetrative convection in a porous medium with internal heat sources. Int. J. Engng Sci. 32, 95–105 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Harfash, A.J.: Three dimensions simulation for the problem of a layer of non-Boussinesq fluid heated internally with prescribed heat flux on the lower boundary and constant temperature upper surface. Int. J. Engng. Sci. 74, 91–102 (2014)

    Article  MathSciNet  Google Scholar 

  18. George, J.H., Gunn, R.D., Straughan, B.: Patterned ground formation and penetrative convection in porous media. Geophys. Astrophys. Fluid Dyn. 46, 135–158 (1989)

    Article  MATH  Google Scholar 

  19. Joseph, D.D.: Stability of Fluid Motions II. Springer, Berlin (1976)

    MATH  Google Scholar 

  20. Straughan, B.: The Energy Method, Stability, and Nonlinear Convection. Series in Applied Mathematical Sciences, Volume 91, (2nd edn.) Springer (2004)

    Book  MATH  Google Scholar 

  21. Straughan, B., Harfash, A.J.: Instability in Poiseuille flow in a porous medium with slip boundary conditions. Microfluid Nanofluid 15, 109–115 (2013)

    Article  Google Scholar 

  22. Harfash, A.J.: Magnetic effect on instability and nonlinear stability of double diffusive convection in a reacting fluid. Continuum Mech. Thermodyn. 25, 89–106 (2013)

    Article  MathSciNet  Google Scholar 

  23. Harfash, A.J., Straughan, B.: Magnetic effect on instability and nonlinear stability in a reacting fluid. Meccanica 47, 1849–1857 (2012)

    Article  MathSciNet  Google Scholar 

  24. Fasel, H.: Investigation of the stability of boundary layers by a finite-difference model of the Navier-Stokes equations. J. of Fluid Mech. 78, 355–383 (1976)

    Article  MATH  Google Scholar 

  25. Napolitano, M., Catalano, L.A.: A multigrid solver for the vorticity-velocity Navier-Stokes equations. Int. J. Numer. Meth. Fluids 13, 49–59 (1993)

    Article  Google Scholar 

  26. Guj, G., Stella, F.: A vorticity-velocity method for the numerical solution of 3D incompressible flows. J. Comput. Phys. 106, 286–298 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Davis, C., Carpenter, P.W.: A novel velocity-vorticity formulation of the Navier-Stokes equations with application to boundary layer disturbance evolution. J. Comp. Phys. 172, 119–165 (2001)

    Article  Google Scholar 

  28. Wong, K.L., Baker, A.J.: A 3D incompressible Navier-Stokes velocity-vorticity weak form finite element algorithm. Int. J. Numer. Meth. Fluids 38, 99–123 (2002)

    Article  MATH  Google Scholar 

  29. Mallinson, G.D., Davis, G.D.V.: Three-dimensional natural convection in a box: A numerical study. J. Fluid Mech. 83, 1–31 (1977)

    Article  Google Scholar 

  30. Daube, O.: Resolution of the 2D Navier-Stokes equations in velocity-vorticity form by means of an influence matrix technique. J. Comput. Phys. 103, 402–414 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Guevremont, G., Habashi, W.G., Hafez, M.M.: Finite element solution of the Navier-Stokes equations by a velocity-vorticity method. Int. J. Numer. Meth. Fluids 10, 461–475 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Harfash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harfash, A.J. Three dimensional simulations of penetrative convection in a porous medium with internal heat sources. Acta Mech Sin 30, 144–152 (2014). https://doi.org/10.1007/s10409-014-0031-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0031-z

Keywords

Navigation