Skip to main content
Log in

Magnetic effect on instability and nonlinear stability of double-diffusive convection in a reacting fluid

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We study the problem of double-diffusive convection in a reacting fluid with a concentration and magnetic field effect–based internal heat source. A linear instability analysis and nonlinear stability analysis are performed, and using the finite element method of p order, we get the numerical results of each case. The numerical results are presented for fixed–fixed and free–free boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baines P.G., Gill A.E.: On thermohaline convection with linear gradients. J. Fluid Mech. 37, 289–306 (1969)

    Article  ADS  Google Scholar 

  2. Celia M.A., Kindred J.S., Herrera I.: Contaminant transport and biodegradation. I. A numerical model for reactive transport in porous media. Water Resour. Res. 25, 1141–1148 (1989)

    Article  ADS  Google Scholar 

  3. Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1981)

    Google Scholar 

  4. Chen B., Cunningham A., Ewing R., Peralta R., Visser E.: Two-dimensional modelling of microscale transport and biotransformation in porous media. Numer. Methods Partial Differ. Equ. 10, 65–83 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng P.: Heat transfer in geothermal systems. Adv. Heat Transf. 14, 1–105 (1978)

    Article  Google Scholar 

  6. Curran M.C., Allen M.B.: Parallel computing for solute transport models via alternating direction collocation. Adv. Water Resour. 13, 70–75 (1990)

    Article  Google Scholar 

  7. Eltayeb I.A., Hamza E.A., Jervase J.A., Krishnan E.V., Loper D.E.: Compositional convection in the presence of a magnetic field. I. A single interface. Proc. R. Soc. Lond. A 460, 3505–3528 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Eltayeb I.A., Hamza E.A., Jervase J.A., Krishnan E.V., Loper D.E.: Compositional convection in the presence of a magnetic field. I. Cartesian plume. Proc. R. Soc. Lond. A 461, 2605–2633 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Ewing R.E., Weekes S.: Numerical Methods for Contaminant Transport in Porous Media, vol. 202, pp. 75–95. Marcel Decker, Inc., New York (1998)

    Google Scholar 

  10. Fabrizio M., Morro A.: Electromagnetism of Continuous Media. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  11. Franchi F., Straughan B.: A comparison of the Graffi and Kazhikhov–Smagulov models for top heavy pollution instability. Adv. Water Resour. 24, 585–594 (2001)

    Article  Google Scholar 

  12. Gaikwad S.N., Malashetty M.S., Prasad K.R.: An analytical study of linear and non-linear double diffusive convection with Soret and Dufour effects in couple stress fluid. Int. J. Non-Linear Mech. 42, 903–913 (2007)

    Article  ADS  Google Scholar 

  13. Galdi G.P., Straughan B.: Exchange of stabilities, symmetry and nonlinear stability. Arch. Ration. Mech. Anal. 89, 211–228 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilman A., Bear J.: The influence of free convection on soil salinization in arid regions. Transp. Porous Media 23, 275–301 (1996)

    Article  Google Scholar 

  15. Gricths R.W.: Layered double-diffusive convection in porous media. J. Fluid Mech. 102, 221–248 (1981)

    Article  ADS  Google Scholar 

  16. Hayat T., Nawaz M.: Unsteady stagnation point flow of viscous fluid caused by an impulsively rotating disk. J. Taiwan Inst. Chem. Eng. 42, 41–49 (2011)

    Article  Google Scholar 

  17. Hill A.A.: Global stability for penetrative double-diffusive convection in a porous medium. Acta Mechanica 200, 1–10 (2008)

    Article  MATH  Google Scholar 

  18. Hill A.A., Malashetty M.S.: An operative method to obtain sharp nonlinear stability for systems with spatially dependent coefficients. Proc. R. Soc. Lond. A 468, 2695–2705 (2012)

    MathSciNet  Google Scholar 

  19. Joseph D.D.: Global stability of the conduction-diffusion solution. Arch. Ration. Mech. Anal. 36, 285–292 (1970)

    Article  MATH  Google Scholar 

  20. Kaloni P.N., Mahajan A.: Stability of magnetic fluid motions in a saturated porous medium. ZAMP 62, 529–538 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  21. Leblanca J., Akbarzadeha A., Andrewsa J., Lub H., Goldingb P.: Heat extraction methods from salinity-gradient solar ponds and introduction of a novel system of heat extraction for improved efficiency. Sol. Energy 85, 3103–3142 (2011)

    Article  Google Scholar 

  22. Ludvigsen A., Palm E., Mckibbin R.: Convective momentum and mass transport in porous sloping layers. J. Geophys. Res. B 97, 12315–12325 (1992)

    Article  ADS  Google Scholar 

  23. Ma C.: Lattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heat source. Nonlinear Anal. Real World Appl. 10, 2666–2678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maehlmann S., Papageorgiou D.T.: Interfacial instability in electrified plane Couette flow. J. Fluid Mech. 666, 155–188 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mahdy A., Chamkha A.J., Baba Y.: Double-diffusive convection with variable viscosity from a vertical truncated cone in porous media in the presence of magnetic field and radiation effects. Comp. Math. Appl. 59, 3867–3878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Malashetty M.S., Pop I., Heera R.: Linear and nonlinear double diffusive convection in a rotating sparsely packed porous layer using a thermal non-equilibrium model. Continuum Mech. Thermodyn. 21, 317–339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Malashetty M.S., Biradar B.S.: The onset of double diffusive reaction-convection in an anisotropic porous layer. Phys. Fluids 23, 064102 (2011)

    Article  ADS  Google Scholar 

  28. Mamou M.: Stability analysis of doublediffusive convection in porous enclosures. In: Ingham, D.B., Pop, I. (eds) Transport Phenomena in Porous Media II, pp. 113–154. Elsevier, Oxford (2002)

    Chapter  Google Scholar 

  29. Mojtabi A., Charrier-Mojtabi M.C.: Double-diffusive convection in porous media. In: Vafai, K. (eds) Handbook of Porous Media, pp. 559–603. Marcel Dekker, New York (2002)

    Google Scholar 

  30. Mojtabi A., Charrier-Mojtabi M.C.: Double-diffusive convection in porous media. In: Vafai, K. (eds) Handbook of Porous Media, 2nd edn, pp. 269–320. Taylor and Francis, New York (2005)

    Chapter  Google Scholar 

  31. Mulone G.: On the nonlinear stability of a fluid layer of a mixture heated and salted from below. Continuum Mech. Thermodyn. 6, 161–184 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Nanjundappa C.E., Ravisha M., Lee J., Shivakumara I.S.: Penetrative ferroconvection in a porous layer. Acta Mechanica 216, 243–257 (2011)

    Article  MATH  Google Scholar 

  33. Nie Z., Bu L., Zheng M., Huang W.: Experimental study of natural brine solar ponds in Tibet. Sol. Energy 85, 1537–1542 (2011)

    Article  Google Scholar 

  34. Nield D.A.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 4, 553–560 (1968)

    Article  ADS  Google Scholar 

  35. Nield D.A., Bejan A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  36. Poulikakos D.: Double diffusive convection in a horizontally sparsely packed porous layer. Int. Commun. Heat Mass Transf. 13, 587–598 (1986)

    Article  Google Scholar 

  37. Rahman M.M., Saidur R., Rahim N.A.: Conjugated effect of joule heating and magneto-hydrodynamic on double-diffusive mixed convection in a horizontal channel with an open cavity. Int. J. Heat Mass Transf. 54, 3201–3213 (2011)

    Article  MATH  Google Scholar 

  38. Rahman M.M., Al-Lawatia M.: Effects of higher order chemical reaction on micropolar fluid flow on a power law permeable stretched sheet with variable concentration in a porous medium. Can. J. Chem. Eng. 88, 23–32 (2010)

    Article  Google Scholar 

  39. Reddy P.D.S., Bandyopadhyay D., Joo S.W., Sharma A., Qian S.: Parametric study on instabilities in a two-layer electromagnetohydrodynamic channel flow confined between two parallel electrodes. Phys. Rev. E 83, 036313 (2011)

    Article  ADS  Google Scholar 

  40. Roberts P.H.: An Introduction to Magnetohydrodynamics. Longman, London (1967)

    Google Scholar 

  41. Rudraiah N., Srimani P.K., Friedrich R.: Finite amplitude convection in a two component fluid saturated porous layer. Heat Mass Transf. 25, 715–722 (1982)

    Article  MATH  Google Scholar 

  42. Rudraiah N., Malashetty M.S.: The influence of coupled molecular diffusion on the double diffusive convection in a porous medium. ASME J. Heat Transf. 108, 872–876 (1986)

    Article  Google Scholar 

  43. Rubin H.: Effect of nonlinear stabilizing salinity profiles on thermal convection in a porous medium layer. Water Resour. Res. 9, 211–248 (1973)

    Article  ADS  Google Scholar 

  44. Shivakumara I.S., Ng C.O., Nagashree M.S.: The onset of electrothermoconvection in a rotating Brinkman porous layer. Int. J. Eng. Sci. 49, 646–663 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shivakumara I.S., Lee J., Ravisha M., Raddy R.G.: Effects of MFD viscosity and LTNE on the onset of ferromagnetic convection in a porous medium. Int. J. Heat Mass Transf. 54, 2630–2641 (2011)

    Article  MATH  Google Scholar 

  46. Straughan B.: The Energy Method, Stability, and Nonlinear Convection, Series in Applied Mathematical Sciences, vol. 91, 2nd edn. Springer, New York (2004)

    Google Scholar 

  47. Suchomel B.J., Chen B.M., Allen M.B.: Network model of flow, transport and biofilm effects in porous media. Transp. Porous Media 30, 1–23 (1998)

    Article  Google Scholar 

  48. Sunil , Sharma A., Bharti P.K., Shandil R.G.: Linear stability of double-diffusive convection in a micropolar ferromagnetic fluid saturating a porous medium. Int. J. Mech. Sci. 49, 1047–1059 (2007)

    Article  Google Scholar 

  49. Sunil , Chand P., Bharti P.K.: Double-diffusive convection in a micropolar ferromagnetic fluid. Appl. Math. Comp. 189, 1648–1661 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sunil , Mahajan A.: A nonlinear stability analysis of a double-diffusive magnetized ferrofluid with magnetic field-dependent viscosity. J. Magn. Magn. Mater. 321, 2810–2820 (2009)

    Article  ADS  Google Scholar 

  51. Sunil , Sharma P., Mahajan A.: A nonlinear stability analysis of a rotating double-diffusive magnetized ferrofluid. Appl. Math. Comp. 218, 2785–2799 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sunil , Sharma P., Mahajan A.: Onset of Darcy–Brinkman double-diffusive convection in a magnetized ferrofluid layer using a thermal non-equilibrium model: a nonlinear stability analysis. J. Geophys. Eng. 7, 417–430 (2010)

    Article  Google Scholar 

  53. Teamah M.A.: Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source. Int. J. Ther. Sci. 47, 237–248 (2008)

    Article  Google Scholar 

  54. Teamah M.A., Elsafty A.F., Massoud E.Z.: Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source. Int. J. Therm. Sci. 52, 161–175 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Harfash.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harfash, A.J. Magnetic effect on instability and nonlinear stability of double-diffusive convection in a reacting fluid. Continuum Mech. Thermodyn. 25, 89–106 (2013). https://doi.org/10.1007/s00161-012-0248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0248-7

Keywords

Navigation