Skip to main content
Log in

Poroelastic behaviors of the osteon: A comparison of two theoretical osteon models

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In the paper, two theoretical poroelastic osteon models are presented to compare their poroelastic behaviors, one is the hollow osteon model (Haversian fluid is neglected) and the other is the osteon model with Haversian fluid considered. They both have the same two types of impermeable exterior boundary conditions, one is elastic restraint and the other is displacement constrained, which can be used for analyzing other experiments performed on similarly shaped poroelastic specimens. The obtained analytical pressure and velocity solutions demonstrate the effects of the loading factors and the material parameters, which may have a significant stimulus to the mechanotransduction of bone remodeling signals. Model comparisons indicate: (1) The Haversian fluid can enhance the whole osteonal fluid pressure and velocity fields. (2) In the hollow model, the key loading factor governing the poroelastic behavior of the osteon is strain rate, while in the model with Haversian fluid considered, the strain rate governs only the velocity. (3) The pressure amplitude is proportional to the loading frequency in the hollow model, while in the model with Haversian fluid considered, the loading frequency has little effect on the pressure amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, X.G., Chen, W.Y., Gao, Z.P., et al.: The effects of Haversian fluid pressure and harmonic axial loading on the poroelastic behaviors of a single osteon. Science China-physics Mechanics & Astronomy 55, 1646–1656 (2012)

    Article  Google Scholar 

  2. Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)

    Article  Google Scholar 

  3. Weinbaum, S., Cowin, S.C., Zeng, Y.: A Model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360 (1994)

    Article  Google Scholar 

  4. Zeng, Y., Cowin, S.C., Weinbaum, S.: A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Ann. Biomed. Eng. 22, 280–292 (1994)

    Article  Google Scholar 

  5. Rémond, A., Naili, S., Lemaire, T.: Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: A finite element study. Biomech Model Mechanobiol 7, 487–495 (2008)

    Article  Google Scholar 

  6. Zhang, D., Weinbaum, S., Cowin, S.C.: On the calculation of bone pore water pressure due to mechanical loading. Int. J. Solids Struct. 35, 4981–4997 (1998)

    Article  MATH  Google Scholar 

  7. Rémond, A., Naili, S.: Transverse isotropic poroelastic osteon model under cyclic loading. Mech. Res. Commun. 32, 645–651 (2005)

    Article  MATH  Google Scholar 

  8. Manfredini, P., Cocchetti, G., Maier, G., et al.: Poroelastic finite element analysis of a bone specimen under cyclic loading. J. Biomech. 32, 135–144 (1999)

    Article  Google Scholar 

  9. Nguyen, V.H., Lemaire, T., Naili, S.: Numerical study of deformation-induced fluid flows in periodic osteonal matrix under harmonic axial loading. C. R. Mecanique 337, 268–276 (2009)

    Article  MATH  Google Scholar 

  10. Nguyen, V.H., Lemaire, T., Naili, S.: Anisotropic poroelastic hollow cylinders with damaged periphery under harmonically axial loadings: Relevance to bone osteons. Multidiscipline Model Mater. Struct. 5, 205–222 (2009)

    Google Scholar 

  11. Nguyen, V.H., Lemaire, T., Naili, S.: Poroelastic behaviour of cortical bone under harmonic axial loading: A finite element study at the osteonal scale. Med. Eng. Phys. 32, 384–390 (2010)

    Article  Google Scholar 

  12. Gailani, G.B., Cowin, S.C.: The unconfined compression of a poroelastic annular cylindrical disk. Mechanics of Materials 6, 507–523 (2008).

    Article  Google Scholar 

  13. Wu, X.G., Chen, W.Y.: A hollow osteon model for examining its poroelastic behaviors: Mathematically modeling an osteon with different boundary cases. European Journal of Mechanics/A Solids 40, 34–49 (2013)

    Article  MathSciNet  Google Scholar 

  14. Hoang, S., Abousleiman, Y.: Poroviscoelasticity of transversely isotropic cylinders under laboratory loading conditions. Mechanics Research Communications 37, 298–306 (2010)

    Article  Google Scholar 

  15. Fritton, S.P., Kenneth, J.M., Rubin, C.T.: Quantifying the strain history of bone: Spatial uniformity and self-similarity of low magnitude strains. J. Biomech. 33, 317–325 (2000)

    Article  Google Scholar 

  16. Cowin, S.C.: Mechanosensation and fluid transport in living bone. J. Musculoskel. Neuron. Interact. 2, 256–260 (2002)

    Google Scholar 

  17. Turner, C.H.: Three rules for bone adaptation to mechanical stimuli. Bone 23, 399–407 (1998)

    Article  Google Scholar 

  18. Beno, T., Yoon, Y.J., Cowin, S.C., et al.: Estimation of bone permeability using accurate microstructural measurements. J. Biomech. 39, 2378–2387 (2006)

    Article  Google Scholar 

  19. Wang, L., Fritton, S.P., Cowin, S.C., et al.: Fluid pressure relaxation depends upon osteonal microstructure: Modeling an oscillatory bending experiment. J. Biomech. 32, 663–672 (1999)

    Article  Google Scholar 

  20. Smit, T.H., Huyghe, J.M.., Cowin, S.C.: Estimation of the poroelastic parameters of cortical bone. J. Biomech. 35, 829–835 (2002)

    Article  Google Scholar 

  21. Anderson, E., Kreuzer, S., Small, O., et al.: Pairing computational and scaled physical models to determine permeability as a measure of cellular communication in micro- and nano-scale pericellular spaces. Microfluid Nanofluids 4, 193–204 (2008)

    Article  Google Scholar 

  22. Goulet, G.C., Coombe, D., Martinuzzi, R.J., et al.: Poroelastic evaluation of fluid movement through the lacunocanalicular system. Ann. Biomed. Eng. 37, 1390–1402 (2009)

    Article  Google Scholar 

  23. Kameo, Y., Adachi, T., Hojo, M.: Fluid pressure response in poroelastic materials subjected to cyclic loading. J. Mech. Phys. Solids 57, 1815–1827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oyen, M.L.: Poroelastic nanoindentation responses of hydrated bone. J. Mater. Res. 23, 1307–1314 (2008)

    Article  Google Scholar 

  25. Galli, M., Oyen, M.L.: Fast identification of poroelastic parameters from indentation tests. Cmes. Comp. Model Eng. 48, 241–270 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Gailani, G., Benalla, M., Mahamud, R., et al.: Experimental determination of the permeability in the lacunar-canalicular porosity of bone. J. Biomech. Eng. 131, 101007 (2009)

    Article  Google Scholar 

  27. Gardinier, J.D., Townend, C.W., Jen, K.P., et al.: In situ permeability measurement of the mammalian lacunar-canalicular system. Bone 46, 1075–1081 (2010)

    Article  Google Scholar 

  28. Curtis, T.A., Ashrafti, S.H., Weber, D.F.: Canalicular communication in the cortices of human long bone. Anat. Rec. 212, 336–344 (1985)

    Article  Google Scholar 

  29. Yoon, Y.J., Cowin, S.C.: An estimate of anisotropic poroelastic constants of an osteon. Biomechan Model Mechanobiol 7, 13–26 (2008)

    Article  Google Scholar 

  30. Yoon, Y.J., Cowin, S.C.: The elastic moduli estimation of the solid-water mixture. Int. J. Solids Struct. 46, 527–533 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yi Chen.

Additional information

The project was supported by the National Natural Science Foundation of China (11032008 and 11302143).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XG., Chen, WY. Poroelastic behaviors of the osteon: A comparison of two theoretical osteon models. Acta Mech Sin 29, 612–621 (2013). https://doi.org/10.1007/s10409-013-0053-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0053-y

Keywords

Navigation