Skip to main content
Log in

Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengths

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengthes were experimentally studied by rotating bending tests, to investigate the effects of the tensile strength obtained by different heat treatment processes on very high cycle fatigue failure mechanisms. The material with higher tensile strength of 1 710MPa exhibited typical gigacycle fatigue failure characteristics, whereas one with lower tensile strength of 1 010MPa showed only traditional fatigue limit during the tests and no gigacycle failure could be found even when the specimen ran up to more than 108 cycles. Metallographic and fractographic analysis were carried out by an optical microscope (OM) and scanning electron microscope (SEM). It showed two different crack initiation mechanisms that for the specimen with lower tensile strength the crack prefers surface initiation and for that with higher strength the crack initiates from subsurface inclusions revealed by a fish-eye like microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakai, T., Lian, B., Takeda, M., et al.: Statistical duplex S-N characteristics of high carbon chromium bearing steel in rotating bending in very high cycle regime. Int. J. Fatigue. 32(3), 497–504 (2010)

    Article  Google Scholar 

  2. Ochi, Y., Matsumura, T., Masaki, K., et al.: High-cycle rotating bending fatigue property in very long-life regime of high-strength steels. Fatigue. Fract. Eng. M. 25(8–9), 823–830 (2002)

    Article  Google Scholar 

  3. Morrissey, R., Nicholas, T.: Staircase testing of a titanium alloy in the gigacycle regime. Int. J. Fatigue. 28(11), 1577–1582 (2006)

    Article  MATH  Google Scholar 

  4. Yamaguchi, K., Abe, T., Kobayashi, K., et al.: Gigacycle fatigue data sheets for advanced engineering materials. Science and Technology of Advanced Materials 8(7–8), 545–551 (2007)

    Article  Google Scholar 

  5. Zhang, J.M., Li, S.X., Yang, Z.G., et al.: Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime. Int. J. Fatigue. 29(4), 765–771 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chana-Min, S., Jong-Hyoung, K.: Fatigue characteristics of bearing steel in very high cycle fatigue. Journal of Mechanical Science and Technology 23(2), 420–425 (2009)

    Article  Google Scholar 

  7. Furuya, Y.: Specimen size effect on gigacycle fatigue properties of SUP7 Spring Steels. Tetsu. To. Hagane. 95(5), 426–433 (2009)

    Article  Google Scholar 

  8. Mayer, H., Haydn, W., Schuller, R., et al.: Very high cycle fatigue properties of bainitic high carbon-chromium steel. Int. J. Fatigue. 31(2), 242–249 (2009)

    Article  Google Scholar 

  9. Masaki, K., Ochi, Y., Matsumura, T.: Initiation and propagation behaviour of fatigue cracks in hard-shot peened Type 316L steel in high cycle fatigue. Fatigue. Fract. Eng. M. 27(12), 1137–1145 (2004)

    Article  Google Scholar 

  10. Shiozawa, K., Lu, L.: Very high-cycle fatigue behaviour of shot-peened high-carbon-chromium bearing steel. Fatigue. Fract. Eng. M. 25(8–9), 813–822 (2002)

    Article  Google Scholar 

  11. Takeuchi, E., Furuya, Y., Nagashima, N., et al.: The effect of frequency on the giga-cycle fatigue properties of a Ti-6Al-4V alloy. Fatigue. Fract. Eng. M. 31(7), 599–605 (2008)

    Article  Google Scholar 

  12. Xu, D.K., Liu, L., Xu, Y.B., et al.: The micro-mechanism of fatigue crack propagation for a forged Mg-Zn-Y-Zr alloy in the gigacycle fatigue regime. J. Alloy. Compd. 454(1–2), 123–128 (2008)

    Article  Google Scholar 

  13. Murugan, G., Raghukandan, K., Pillai, U.T.S., et al.: Influence of transverse load on the high cycle fatigue behaviour of low pressure cast AZ91 magnesium alloy. Mater. Design. 30(10), 4211–4217 (2009)

    Article  Google Scholar 

  14. Mason, W.P.: Piezoelectric Crystals and Their Application to Ultrasonics. D. Van Nostrand Co. London, 508 (1950)

    Google Scholar 

  15. Hong, Y.S., Zhao, A.G., Qian, G.A.: Essential characteristics and influential factors for very-high-cycle fatigue behavior of metallic materials. Acta Metallurgica Sinica 45(7), 769–780 (2009)

    Google Scholar 

  16. Marines-Garcia, I., Paris, P.C., Tada, H., et al.: Fatigue crack growth from small to large cracks on very high cycle fatigue with fish-eye failures. Eng. Fract. Mech. 75(6), 1657–1665 (2008)

    Article  Google Scholar 

  17. Slamecka, K., Pokluda, J., Kianicova, M., et al.: Quantitative fractography of fish-eye crack formation under bending-torsion fatigue. Int. J. Fatigue. 32(6), 921–928 (2010)

    Article  Google Scholar 

  18. Bathias, C., Miller, K.J., Stanzl-Tschegg, S.: Gigacycle fatigue. Fatigue. Fract. Eng. M. 22(7), 543 (1999)

    Article  Google Scholar 

  19. Murakami, Y., Yokoyama, N.N., Nagata, J.: Mechanism of fatigue failure in ultralong life regime. Fatigue. Fract. Eng. M. 25(8–9), 735–746 (2002)

    Article  Google Scholar 

  20. Sakai, T., Takeda, M., Shiozawa, K., et al.: Experimental reconfirmation of characteristic S-N property for high carbon chromium bearing steel in wide life region in rotating bending. Journal of the Society of Materials Science, Japan 49(7), 779–785 (2000)

    Article  Google Scholar 

  21. Murakami, Y.: Analysis of stress intensity factors of mode-I mode-II and mode-III for inclined surface cracks of arbitrary shape. Eng. Fract. Mech. 22(1), 101–114 (1985)

    Article  Google Scholar 

  22. Chai, G.C.: The formation of subsurface non-defect fatigue crack origins. Int. J. Fatigue. 28(11), 1533–1539 (2006)

    Article  MATH  Google Scholar 

  23. Murakami, Y., Nomoto, T., Ueda, T.: Factors influencing the mechanism of superlong fatigue failure in steels. Fatigue. Fract. Eng. M. 22(7), 581–590 (1999)

    Article  Google Scholar 

  24. Abe, T., Furuya, Y., Matsuoka, S.: Gigacycle fatigue properties of 1800 MPa class spring steel. Fatigue and Fracture of Engineering Materials and Structures 27(2), 159–167 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ji Shi.

Additional information

The project was supported by funds of MHI Corporation, the National Natural Science Foundation of China (10872105).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Z., Ma, XF., Shi, HJ. et al. Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengths. Acta Mech Sin 27, 778–784 (2011). https://doi.org/10.1007/s10409-011-0451-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0451-5

Keywords

Navigation