Skip to main content
Log in

Measurement of length-scale and solution of cantilever beam in couple stress elasto-plasticity

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ 0HE, where σ 0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  2. Stolken J.S., Evans A.G.: A microbend test method for measuring the plasticity length-scale. Acta. Mater. 46(14), 5109–5115 (1998)

    Article  Google Scholar 

  3. Nix W.D., Gao H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids. 46, 411–425 (1998)

    Article  MATH  Google Scholar 

  4. Wei Y.G., Wang X.Z., Zhao M.H., Min C.: Size effect and geometrical effect of solids in micro-indentation test. Acta Mech. Sin. 19(1), 59–70 (2003)

    Article  Google Scholar 

  5. Zhang F., Huang Y.G.: The indenter tip radius effect in micro- and nanoindentation hardness experiments. Acta Mech. Sin. 22(1), 1–8 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chen S.H., Wang T.C.: Mode I and mode II crack tip asymptotic fields with strain gradient effects. Acta Mech. Sin. 17(3), 269–180 (2001)

    Article  Google Scholar 

  7. Xia S., Chen S.H.: Crack tip field and J-integral with strain gradient effect. Acta Mech. Sin. 20(3), 228–237 (2004)

    Article  Google Scholar 

  8. Begley M.R., Hutchinson J.W.: The mechanics of size-dependent indentation. J. Mech. Phys. Solid. 46(10), 2049–2068 (1998)

    Article  MATH  Google Scholar 

  9. Shu J.Y., Fleck N.A.: The prediction of a size effect in micro-indentation. Int. J. Solid Struct. 35(13), 1363–1383 (1998)

    Article  MATH  Google Scholar 

  10. Chen S.H., Wang T.C.: A new hardening law for strain gradient plasticity. Acta Mater. 48(16), 3997–4005 (2000)

    Article  Google Scholar 

  11. Chen S.H., Wang T.C.: Strain gradient theory with couple stress for crystalline solids. Eur. J. Mech. A Solids. 20(5), 739–756 (2001)

    Article  MATH  Google Scholar 

  12. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solid. 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  13. Park S.K., Gao X.L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006)

    Article  Google Scholar 

  14. Wang W., Huang Y., Hsia K.J., Hu K.X., Chandra A.: A study of microbend test by strain gradient plasticity. Int. J. Plast. 19(3), 365–382 (2003)

    Article  MATH  Google Scholar 

  15. Zhang L.: A separated law of hardening in strain gradient plasticity. Acta Mech. Sin. 13(2), 161–164 (1997)

    Article  MATH  Google Scholar 

  16. Aifantis E.C.: On the microstructural origin of certain inelastic models. ASME J. Eng. Mater. Technol. 106(4), 326–330 (1984)

    Article  Google Scholar 

  17. Fleck N.A., Hutchinson J.W.: A phenomenological theory for strain gradient effects in plasticity. J Mech. Phys. Solids 41(12), 1825–1857 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fleck N.A., Hutchinson J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  Google Scholar 

  19. Gao H., Huang Y., Nix W.D., Hutchinson J.W.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47(6), 1239–1263 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huang Y., Gao H., Nix W.D., Hutchinson J.W.: Mechanism-based strain gradient plasticity—II. Anal. J. Mech. Phys. Solid. 48, 99–128 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gao H., Huang Y.: Taylor-based nonlocal theory of plasticity. Int. J. Solids Struct. 38(15), 2615–2637 (2001)

    Article  MATH  Google Scholar 

  22. Chen S.H., Wang T.C.: A new deformation theory with strain gradient effects. Int. J. Plast. 18(8), 971–995 (2002)

    Article  MATH  Google Scholar 

  23. Liu X.N., Hu G.K.: A continuum micromechanical theory of overall plasticity for particulate composites including particle size effect. Int. J. Plast. 21(4), 777–799 (2005)

    Article  MATH  Google Scholar 

  24. Wang W., Huang Y., Hsia K.J., Hu K.X., Chandra A.: A study of microbend test by strain gradient plasticity. Int. J. Plast. 19(3), 365–382 (2003)

    Article  MATH  Google Scholar 

  25. Abu Al-Rub R.K., Voyiadjis G.Z.: A physically based gradient plasticity theory. Int. J. Plast. 22, 654–684 (2006)

    Article  MATH  Google Scholar 

  26. Ai-Kah S., Chen W.J.: Finite element formulations of strain gradient theory for microstructures and the C0-1 patch test. Int. J. Numer. Methods Eng. 61(3), 433–454 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ji.

Additional information

The project supported by the National Natural Science Foundation of China (50479058, 10672032).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, B., Chen, W. & Zhao, J. Measurement of length-scale and solution of cantilever beam in couple stress elasto-plasticity. Acta Mech Sin 25, 381–387 (2009). https://doi.org/10.1007/s10409-009-0226-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0226-x

Keywords

Navigation