Skip to main content
Log in

Subgrid-scale contributions to Lagrangian time correlations in isotropic turbulence

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid-scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sawford B.: Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289–317 (2001)

    Article  Google Scholar 

  2. Pope S.B.: Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23–63 (1994)

    Article  MathSciNet  Google Scholar 

  3. He G.W., Zhang Z.F.: Two-ponit closure strategy in the mapping closure approximation approach. Phys. Rev. E. 70, 036309 (2004)

    Article  Google Scholar 

  4. Wang L.P., Maxey M.R.: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27 (1993)

    Article  Google Scholar 

  5. Yeung P.K.: Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115–142 (2002)

    Article  MathSciNet  Google Scholar 

  6. He G.W., Rubinstein R., Wang L.-P.: Effects of subgrid-scale modeling on time correlations in large eddy simulation. Phys. Fluids. 14, 2186 (2000)

    Article  Google Scholar 

  7. He G.W., Wang M., Lele S.K.: On the computation of space-time correlations by large-eddy simulation. Phys. Fluids. 16, 3859–3867 (2004)

    Article  Google Scholar 

  8. Park N., Yoo J.Y., Choi H.: Toward improved consistency of a priori tests with a posteriori tests in large eddy simulation. Phys. Fluids. 17, 015103 (2005)

    Article  Google Scholar 

  9. Corrsin, S.: Mechanique de la Turbulence. Colloques internationaux du Centre National de la Recherche Scientifique, No. 108, C. N. R. S., Paris (1961)

  10. Squires K.D., Eaton J.K.: Lagrangian and Eulerian statistics obtained from direct numerical simulation of homogeneous turbulence. Phys. Fluids. A 3(1), 130 (1991)

    Article  MATH  Google Scholar 

  11. Kraichnan R.H.: Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys. Fluids. 7, 1723 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaneda Y., Gotoh T.: Lagrangian velocity autocorrelation in isotropic turbulence. Phys. Fluids. A 3, 1924 (1991)

    Article  MATH  Google Scholar 

  13. Kaneda Y.: Lagrangian and Eulerian time corraltions in turbulence. Phys. Fluids. A 5, 2835 (1993)

    Article  MATH  Google Scholar 

  14. Wang Q., Squires K.D.: Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids. 8, 1207 (1996)

    Article  MATH  Google Scholar 

  15. Armenio V., Piomelli U., Fiorotto V.: Effect of subgrid scales on particle motion. Phys. Fluids. 11, 3030–3042 (1999)

    Article  MATH  Google Scholar 

  16. Okong’o N., Bellan J.: A prior subgrid analysis of temporal mixing layers with evaporating droples. Phys. Fluids. 12, 1573 (2000)

    Article  MATH  Google Scholar 

  17. Kuerten J.G.M., Verman A.W.: Can turbuphoresis be predicted by large-eddy simulation?. Phys. Fluids. 17, 011701 (2005)

    Article  Google Scholar 

  18. Shotorban B., Mashayek F.: Modeling subgrid-scale effects on particles by approximate deconvolution. Phys. Fluids. 17, 081701-1 (2005)

    Article  Google Scholar 

  19. Yang Y., He G.W., Wang L.P.: Effects of subgrid-scale modeling on Lagrangian statistics in large-eddy simulation. J. Turbulence 9, 1–24 (2008)

    MathSciNet  Google Scholar 

  20. Yeung P.K., Pope S.B.: Lagrangian statics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 27, 531–586 (1989)

    Article  MathSciNet  Google Scholar 

  21. Gotoh T., Rogallo R.S., Herring J.R., Kraichnan R.H.: Lagrangian velocity correlation in homogeneous isotropic turbulence. Phys. Fluids. A 5(11), 2846 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chollet J.P., Lesieur M.: Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closure. J. Atmos. Sci. 38, 2747 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., He, G. & Lu, L. Subgrid-scale contributions to Lagrangian time correlations in isotropic turbulence. Acta Mech Sin 25, 45–49 (2009). https://doi.org/10.1007/s10409-008-0220-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0220-8

Keywords

Navigation