Skip to main content
Log in

Assessment of SGS Models for Large Eddy Simulation (LES) of a Stratified Taylor–Green Vortex

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Eddy viscosity-based and regularization-based subgrid-scale (SGS) models are quantitatively assessed for large eddy simulations (LES) of stratified Taylor–Green vortex (TGV). LES calculations using the dynamic Smagorinsky, Leray-\(\alpha\), LANS-\(\alpha\) and Clark-\(\alpha\) models are conducted using a pseudo-spectral formulation on a \(128^{3}\) grid and using \(\alpha =\frac{1}{160}\) (for all the regularization models) for Froude number, \(Fr_0=\frac{{\mathcal {U}}}{{{\mathcal {N}}}{{\mathcal {L}}}}=1\), and Reynolds number, \(Re_{0}= \frac{\mathcal {U L} }{\nu }=1600\). Results are compared in detail with in-house direct numerical simulation (DNS) calculations. Validation of the formulation is carried out through grid-dependent studies using grids of \(64^3\), \(128^3\) and \(256^3\), \(\alpha\) (regularization parameter)-dependent studies using \(\alpha\) values of \(\frac{1}{40}, \frac{1}{80}, \frac{1}{160}\) and \(\frac{1}{320}\), and comparisons with previously published results Remmler and Hickel, 2012, of the same problem. Various quantities including turbulent kinetic energy (tke), turbulent potential energy (tpe), Q-criteria based vortical structures, potential & total energy spectra, and horizontal & vertical energy fluxes in the respective directions, are analyzed to understand the capability of the various LES models in predicting the development of stratified turbulence. Results showed that all the SGS model predictions were very similar to each other with Smagorinsky and Leray displaying the lowest and highest errors, respectively, in comparison to DNS. The effect of \(Fr_0\) was also studied through additional LES calculations at \(Fr_0=0.5\) and 0.16, again using the dynamic Smagorinsky and regularization models and comparing various parameters including tke, tpe and energy spectra to DNS. Decay rates of tke and tpe decreased and turbulence was significantly suppressed with decrease in \(Fr_0\). At these lower \(Fr_0\), all the SGS model predictions were almost identical to each other and compared extremely well with the DNS results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Chandy, A.J., Frankel, S.H.: Regularization-based sub-grid scale (SGS) models for large eddy simulations (LES) of high-Re decaying isotropic turbulence. J. Turbul 10, N25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chandy, A.J., Frankel, S.H.: Leray-\(\alpha\) LES of magnetohydrodynamic turbulence at low magnetic Reynolds number. J. Turbul. 12, N17 (2011)

    MathSciNet  Google Scholar 

  • Chung, D., Matheou, G.: Large-Eddy simulation of stratified turbulence. Part I: A vortex-based subgrid-scale model. J. Atmos. Sci. 71, 1863–1879 (2014)

    Article  Google Scholar 

  • Denaro, F.M., De Stefano, G.: A new development of the dynamic procedure in large-eddy simulation based on a Finite Volume integral approach. Application to stratified turbulence. Theoret. Comput. Fluid Dyn. 25, 315–355 (2011)

    Article  MATH  Google Scholar 

  • Drikakis, D., Fureby, C., Grinstein, F., Youngs, D.: Simulation of transition and turbulence decay in the Taylor–Green vortex. J. Turbul. 8, 1–12 (2009)

    MATH  Google Scholar 

  • Germano, M.: Turbulence: the filtering approach. J. Fluid Mech. 238, 325–336 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid scale eddy viscosity model. Phys. Fluids 3, 1760 (1991)

    Article  MATH  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  • Geurts, B.J., Holm, D.: Regularization modelling for large-eddy simulation. Phys. Fluids 15, L13–L16 (2003)

    Article  Google Scholar 

  • Geurts, B.J., Holm, D.D.: Leray and LANS-\(\alpha\) modelling of turbulent mixing. J. Turbul. 7, N10 (2006)

    MathSciNet  Google Scholar 

  • Geurts, B.J., Holm, : Leray and LANS-\(\alpha\) modelling of turbulent mixing. J. Turbul. 7, 1–33 (2006)

    MathSciNet  MATH  Google Scholar 

  • Geurts, B.J., Kuczaj, A.K., Titi, E.S.: Regularization modeling for large-eddy simulation of homogeneous isotropic decaying turbulence. J. Phys. A 41, 344008 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Graham, J.P., Holm, D.D., Mininni, P.D., Pouquet, A.: Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes \(\alpha\) model and theor large eddy simulation potential. Phys. Rev. Lett. 76, 056310 (2007)

    Google Scholar 

  • Graham, J., Holm, D., Mininni, P., Pouquet, A.: Three regularization models of the Navier–Stokes equations. Phys. Fluids 20, 035107 (2008)

    Article  MATH  Google Scholar 

  • Kc, A., Chandy, A.J.: Assessment of five SGS models for low-RemMHD turbulence. Flow Turbul. Combust. 96, 693–716 (2016)

    Article  Google Scholar 

  • Khani, S., Waite, M.L.: Buoyancy scale effects in large-eddy simulations of stratified turbulence. J. Fluid Mech. 754, 75–97 (2014)

    Article  MATH  Google Scholar 

  • Khani, S., Waite, M.L.: Large eddy simulations of stratified turbulence: the dynamic Smagorinsky model. J. Fluid Mech. 773, 327–344 (2015)

    Article  MATH  Google Scholar 

  • Leonard, A.: Energy cascade in Large-Eddy simulations of turbulent fluid flows. In: Frenkiel, F., Munn, R. (eds.) Turbulent Diffusion in Environmental Pollution, pp. 237–248. Elsevier, Amsterdam (1975)

    Google Scholar 

  • Lilly, D.K.: A proposed modification of the Germano subgrid scale closure method. Phys. Fluids A 4, 633–635 (1992)

    Article  Google Scholar 

  • Lindborg, E.: The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207–242 (2006)

    Article  MATH  Google Scholar 

  • McMurtry, P.A., Jou, W.H., Metcalfe, R.W., Riley, J.J.: Direct numerical simulations of a reacting mixing layer with chemical heat release. AIAA J. 24, 962–970 (1986)

    Article  Google Scholar 

  • Metais, O.: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157–194 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Orszag, S.A.: Numerical simulation of the Taylor–Green vortex, pp. 50–64. Springer, Berlin (1974)

    MATH  Google Scholar 

  • POPE, S.B.: Turbulent flows, (2000), pp. 771 p. : ill. ; 24 cm ” + Appendixes Includes bibliography + indexes

  • Paoli, R., Thouron, O., Escobar, J., Picot, J., Cariolle, D.: High-resolution large-eddy simulations of sub-kilometer-scale turbulence in the upper troposphere lower stratosphere. Atmos. Chem. Phys. Discuss. 13, 31891–31932 (2013)

    Article  Google Scholar 

  • Pekurovsky, D.: P3DFFT: a framework for parallel computations of fourier transforms in three dimensions. SIAM J. Sci. Comput. 34, C192–C209 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Rahimi, A., Chandy, A.J.: Direct numerical simulations of non-helical and helical stratified turbulent flows. J. Turbul. 17, 1–29 (2016)

    Article  MathSciNet  Google Scholar 

  • Reeuwijk, M.V., Jonker, H.J.J., Hanjali, K.: Incompressibility of the Leray-\(\alpha\) model for wall-bounded flows. Phys. Fluids 18, 018103 (2006)

    MathSciNet  MATH  Google Scholar 

  • Remmler, S., Hickel, S.: Direct and large eddy simulation of stratified turbulence. Int. J. Heat Fluid Flow 35, 13–24 (2012)

    Article  Google Scholar 

  • Remmler, S., Hickel, S.: Spectral structure of stratified turbulence: direct numerical simulations and predictions by large Eddy simulation. Theor. Comput. Fluid Dyn. 27, 319–336 (2013)

    Article  Google Scholar 

  • Riley, J.J., Lelong, M.P.: Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32, 613–657 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Riley, J.J., deBruynKops, S.M.: Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15, 2047–2059 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Samgorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  • Schumann, U.: Direct and large eddy simulations of stratified homogeneous shear flows. Dyn. Atmos. Oceans 23, 81–98 (1996). Stratified flows

    Article  Google Scholar 

  • Shen, Z., Li, Y., Cui, G., Zhang, Z.: Large eddy simulation of stably stratified turbulence. Sci. China Phys. Mech. Astron. 53, 135–146 (2010)

    Article  Google Scholar 

  • Silvada, C.B., Pereira, J.C.F.: Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20, 055101 (2008)

    Article  MATH  Google Scholar 

  • Taylor, G.I., Green, A.E.: Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. Ser. A 158, 499–521 (1937)

    Article  MATH  Google Scholar 

  • VanDine, A., Pham, H.T., Sarkar, S.: Investigation of LES models for a stratified shear layer. Comput. Fluids 198, 104405 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhilash J. Chandy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, K., Chandy, A.J. Assessment of SGS Models for Large Eddy Simulation (LES) of a Stratified Taylor–Green Vortex. Flow Turbulence Combust 106, 37–60 (2021). https://doi.org/10.1007/s10494-020-00175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00175-5

Keywords

Navigation