Skip to main content
Log in

Wie funktioniert die Lunge im Alter?

How do the lungs function in old age?

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Fortgeschrittenes Alter ist assoziiert mit signifikanten Änderungen der Lungenstruktur, einer Reduktion der Lungenfunktion, Änderungen des Immunsystems mit Auswirkungen auf die Lunge selbst und einer gestörten Integrität physiologischer Barrieren gegen das Eindringen von Partikeln und Organismen. Diese Veränderungen der respiratorischen Physiologie und der Funktion des Immunsystems in Verbindung mit einer leichtgradigen chronischen Entzündung im Lungengewebe als Reaktion auf Umweltexposition und endogene Faktoren erklären zumindest teilweise die erhöhte Suszeptibilität der alternden Lunge für bestimmte Erkrankungen. Dazu zählen chronische Bronchitis, Lungenemphysem, COPD, Lungenkrebs und Infektionen einschließlich Lungenentzündungen, die beim älteren Menschen Erkrankungen mit hoher Sterblichkeit darstellen.

Abstract

Advanced age is associated with significant changes in lung structure, a decline in lung function, changes in the immune system and impairment of the physical barriers that protect against invading particles and organisms. These alterations in respiratory physiology and immune function coupled with low grade chronic inflammation of lung tissue induced by environmental exposure or endogenous factors may, at least in part, account for the increase in susceptibility to characteristic illnesses. These include chronic bronchitis, emphysema, chronic obstructive pulmonary disease (COPD), neoplasia and infections including pneumonia as a leading cause of illness and death in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Thurlbeck WM (1991) Morphology of the aging lung. In: Chrystal RG, West JB, Barnes PJ (Hrsg) The lung. Raven Press, New York, S 1743–1748

  2. Pinkerton KE, Cowin LL, Witschi H (1996) Development, growth, and aging of the lungs. In: Mohr U, Dungworth DL, Capen CC et al (Hrsg) Pathobiology of the aging Mouse (Volume 1) ILSI, Washington DC, S 261–272

  3. Cawthon RM, Smith KR, O’Brien E et al (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395

    Article  PubMed  CAS  Google Scholar 

  4. Cherkas LF, Hunkin JL, Kato BS et al (2008) The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med 168:154–158

    Article  PubMed  Google Scholar 

  5. Pérez R, López M, Barja de Quiroga G (1991) Aging and lung antioxidant enzymes, glutathione, and lipid peroxidation in the rat. Free Radic Biol Med 10:35–39

    Article  PubMed  Google Scholar 

  6. Rikans LE, Moore DR (1988) Effect of aging on aqueous-phase antioxidants in tissues of male Fischer rats. Biochim Biophys Acta 966:269–275

    Article  PubMed  CAS  Google Scholar 

  7. Savale L, Chaouat A, Bastuji-Garin S et al (2009) Shortened telomeres in circulating leukocytes of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 179:566–571

    Article  PubMed  CAS  Google Scholar 

  8. Zglinicki T von (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Article  Google Scholar 

  9. Senn O, Russi EW, Schindler C et al (2008) Circulating alpha1-antitrypsin in the general population: determinants and association with lung function. Respir Res9:35

    Article  Google Scholar 

  10. Parker DR, O’Connor GT, Sparrow D et al (1990) The relationship of nonspecific airway responsiveness and atopy to the rate of decline of lung function. Am Rev Respir Dis 141:589–594

    Article  PubMed  CAS  Google Scholar 

  11. Kohansal R, Martinez-Camblor P, Agustí A et al (2009) The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. Am J Respir Crit Care Med 180:3–10

    Article  PubMed  Google Scholar 

  12. Green FHY, Pinkerton KE (2004) Environmental determinants of the lung aging. In: Harding R, Pinkerton KE, Plopper CG (Hrsg) The lung: development, aging and the environment. Elsevier academic press. San Diego, S 377–395

  13. Macklem PT (2010) Therapeutic implications of the pathophysiology of COPD. Eur Respir J 35:676–680

    Article  PubMed  CAS  Google Scholar 

  14. Bree L van, Marra M, Scheindelen HJ van et al (1995) Dose-effect models for ozone exposure: tool for quantitative risk estimation. Toxicol Lett 82–83:317–321

    Google Scholar 

  15. Salvi SS, Barnes PJ (2009) Chronic obstructive pulmonary disease in non-smokers. Lancet 374:733–743

    Article  PubMed  Google Scholar 

  16. Hogg JC (2001) Role of latent viral infections in chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 164:S71–75

    PubMed  CAS  Google Scholar 

  17. Stettler LE, Platek SF, Riley RD et al (1991) Lung particulate burdens of subjects from the Cincinnati, Ohio urban area. Scanning Microsc 5:85–92

    PubMed  CAS  Google Scholar 

  18. Patel BD, Loo WJ, Tasker AD et al (2006) Smoking related COPD and facial wrinkling: is there a common susceptibility? Thorax 61:568–571

    Article  PubMed  CAS  Google Scholar 

  19. Godleski JJ, Verrier RL, Koutrakis P et al (2000) Mechanisms of morbidity and mortality from exposure to ambient air particles. Res Rep Health Eff Inst 91:5–103

    PubMed  Google Scholar 

  20. Frette C, Barrett-Connor E, Clausen JL (1996) Effect of active and passive smoking on ventilatory function in elderly men and women. Am J Epidemiol 143:757–765

    Article  PubMed  CAS  Google Scholar 

  21. Meyer KC (2010) The role of immunity and inflammation in lung senescence and susceptibility to infection in the elderly. Semin Respir Crit Care Med 31:561–574

    Article  PubMed  Google Scholar 

  22. Meyer KC (2001) The role of immunity in susceptibility to respiratory infection in the aging lung. Respir Physiol 128:23–31

    Article  PubMed  CAS  Google Scholar 

  23. Höffken G, Lorenz J, Kern W et al (2010) Guidelines of the Paul-Ehrlich-Society of chemotherapy, the German Respiratory Diseases Society, the German Infectious Diseases Society and of the Competence Network CAPNETZ for the management of lower respiratory tract infections and community-acquired pneumonia. Pneumologie 64:149–154

    Article  PubMed  Google Scholar 

  24. Crapo RO, Crapo JD, Morris AH (1982) Lung tissue and capillary blood volumes by rebreathing and morphometric techniques. Respir Physiol 49:175–186

    Article  PubMed  CAS  Google Scholar 

  25. Mannino DM, Diaz-Guzman E (2012) Interpreting lung function data using 70% predicted and fixed thresholds identifies patients at increased risk of mortality. Chest 141:73–80

    Article  PubMed  Google Scholar 

  26. Mannino DM, Sonia Buist A, Vollmer WM (2007) Chronic obstructive pulmonary disease in the older adult: what defines abnormal lung function? Thorax 62:237–241

    Article  PubMed  Google Scholar 

  27. Mohamed Hoesein FA, Hoop B de, Zanen P et al (2011) CT-quantified emphysema in male heavy smokers: association with lung function decline. Thorax 66:782–787

    Article  Google Scholar 

  28. Shirtcliffe P, Weatherall M, Marsh S et al (2008) COPD prevalence in a random population survey: a matter of definition. Eur Respir J 30:232–239

    Article  Google Scholar 

  29. Bai TR, Cooper J, Koelmeyer T et al (2000) The effect of age and duration of disease on airway structure in fatal asthma. 162:663–669

  30. Bonsignore MR, McNicholas W (2009) Sleep disordered breathing in the elderly. Eur Respir Mon 43:179–204

    Article  Google Scholar 

  31. Mohamed Hoesein FA, Rikxoort E van et al (2012) CT-quantified emphysema distribution is associated with lung function decline. Eur Respir J (im Druck)

  32. Mohamed Hoesein FA, Zanen P, Lammers JW (2011) Lower limit of normal or FEV1/FVC < 0.70 in diagnosing COPD: an evidence-based review. Respir Med 105:907–915

    Article  Google Scholar 

  33. Mohamed Hoesein FA, Zanen P, Sachs AP et al (2012) Spirometric thresholds for diagnosing COPD: 0.70 or LLN, Pre- or Post-dilator values? COPD 9:338–343

    Google Scholar 

  34. Pellegrino R, Viegi G, Brusasco V et al (2005) Interpretative strategies for lung function tests. Eur Respir J 26:948–968

    Article  PubMed  CAS  Google Scholar 

  35. Waschki B, Kirsten A, Holz O et al (2011) Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest 140:331–342

    Article  PubMed  CAS  Google Scholar 

  36. Watson A, Joyce H, Pride NB (2000) Changes in carbon monoxide transfer over 22 years in middle-aged men. Respir Med 94:1103–1108

    Article  PubMed  CAS  Google Scholar 

  37. Nass R, Thorner MO (2002) Impact of the GH-cortisol ratio on the age-dependent changes in body composition. Growth Horm IGF Res 12:147–161

    Article  PubMed  CAS  Google Scholar 

  38. Weiss ST, Ware JH (1996) Overview of issues in the longitutinal analysis of respiratory data. Am J Respir Crit Care Med 154:S208–211

    PubMed  CAS  Google Scholar 

  39. Swanney MP, Ruppel G, Enright PL et al (2008) Using the lower limit of normal for the FEV1/FVC ratio reduces the misclassification of airway obstruction. Thorax 63:1046–1051

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Teschler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleibrink, B., Teschler, H. Wie funktioniert die Lunge im Alter?. Pneumologe 9, 331–341 (2012). https://doi.org/10.1007/s10405-011-0521-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-011-0521-7

Schlüsselwörter

Keywords

Navigation