Skip to main content
Log in

Diagnostik der primären ziliären Dyskinesie

Diagnostics of primary ciliary dyskinesia

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Die primäre ziliäre Dyskinesie (PCD) ist eine klinisch und genetisch heterogene hereditäre Erkrankung. Der Phänotyp der Erkrankung erklärt sich durch angeborene Defekte respiratorischer Flimmerhärchen (Zilien). Aufgrund einer verminderten mukoziliären Reinigung der Atemwege kommt es zu rezidivierenden Infektionen der oberen und unteren Atemwege. Die Hälfte der PCD-Patienten weist aufgrund einer zufälligen Anordnung der Links/Rechts-Körperasymmetrie einen Situs inversus (Kartagener Syndrom) auf. Bei klinischem Verdacht kann die Diagnose durch Elektronenmikroskopie, hochauflösende Immunfluoreszenzmikroskopie und/oder direktmikroskopische Evaluation des Zilienschlages bestätigt werden. Kürzlich konnten Mutationen bei rezessiv vererbter PCD mit äußeren Dyneinarmdefekten in den Genen DNAI1, DNAH5, DNAH11, TXNDC3 nachgewiesen werden. Hierbei finden sich DNAH5-Mutationen in mehr als 50% der Fälle. Selten finden sich Mutationen bei Jungen mit X-chromosomal rezessiver PCD, assoziiert mit Retinitis pigmentosa (RPGR) oder einem komplexen mentalen Retardierungssyndrom mit Makrozephalie (OFD1).

Abstract

Primary ciliary dyskinesia (PCD) is a phenotypically and genetically heterogeneous genetic disorder. The respiratory disease phenotype which is characterized by upper and lower airway infections results from inborn defects of respiratory cilia responsible for defective mucociliary clearance. Randomization of left/right body asymmetry is responsible for situs inversus (Kartagener’s syndrome) in half of affected individuals. As a screening test nasal nitric oxide measurement can be used. Establishment of the diagnosis currently relies on electron microscopy, high-resolution immunofluorescence analysis, and/or direct evaluation of ciliary beat by light microscopy. Recently mutations in the four genes DNAI1, DNAH5, TXNDC3, and DNAH11 that all encode for outer dynein arm proteins have been linked to recessive PCD. For diagnostic testing especially DNAH5 and DNAI1 mutation screening is useful, because they are responsible for more than 50% of PCD cases with outer dynein arm defects. Rarely mutations in RPGR (PCD + retinitis pigmentosa) and OFD1 (PCD + complex mental retardation syndrome) have been identified in X-linked recessive PCD variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Afzelius BA (1976) A human syndrome caused by immotile cilia. Science 193: 317–319

    Article  PubMed  CAS  Google Scholar 

  2. Afzelius BA, Mossberg B (1995) Immotile cilia syndrome (primary ciliary dyskinesia) including Kartagener syndrome. In Scriver CR, Beaudet AL, Sly WS (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3943–3954

  3. Bartoloni L, Blouin JL, Pan Y et al. (2002) Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Nat Acad Sci USA 99: 10282–10286

    Article  PubMed  CAS  Google Scholar 

  4. Blouin JL, Meeks M, Radhakrishna U et al. (2000) Primary ciliary dyskinesia: a genome-wide linkage analysis reveals extensive locus heterogeneity. Eur J Human Genetics 8: 109–118

    Article  CAS  Google Scholar 

  5. Budny B, Chen W, Omran H et al. (2006) A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum Genet 120: 171–178

    Article  PubMed  CAS  Google Scholar 

  6. Bush A, Cole P, Hariri M et al. (1998) Primary ciliary dyskinesia: diagnosis and standards of care. Eur Respir J 12: 982–988

    Article  PubMed  CAS  Google Scholar 

  7. Csoma Z, Bush A, Wilson NM et al. (2003) Nitric oxide metabolites are not reduced in exhaled breath condensate of patients with primary ciliary dyskinesia. Chest 124: 633–638

    Article  PubMed  CAS  Google Scholar 

  8. Duriez B, Duquesnoy P, Escudier E et al. (2007) A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Nati Acad Sci USA, published online Feb 20

  9. Dry KL, Manson FD, Lennon A et al. (1999) Identification of a 5‘ splice site mutation in the RPGR gene in a family with X-linked retinitis pigmentosa (RP3). Human Mutation 13: 141–145

    Article  PubMed  CAS  Google Scholar 

  10. El Zein L, Omran H, Bouvagnet P (2003) Lateralization defects and ciliary dyskinesia: lessons from algae. Trends Genetics 19: 162–167

    Article  Google Scholar 

  11. Fliegauf M, Olbrich H, Horvath J et al. (2005) Mis-localization of DNAH5 and DNAH9 in respiratory cells from primary ciliary dyskinesia patients. Am J Respir Crit Care Med 171: 1343–1349

    Article  PubMed  Google Scholar 

  12. Greenstone MA, Stanley P, Cole P, Mackay I (1985) Upper airway manifestations of primary ciliary dyskinesia. J Laryng Otol 99: 985–991

    CAS  Google Scholar 

  13. Guichard C, Harricane MC, Lafitte JJ et al. (2001) Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Human Genetics 68: 1030–1035

    Article  CAS  Google Scholar 

  14. Hadfield PJ, Rowe-Jones JM, Bush A, Mackay IS (1997) Treatment of otitis media with effusion in children with primary ciliary dyskinesia. Clin Otolaryngol 22: 302–306

    Article  PubMed  CAS  Google Scholar 

  15. Hornef N, Olbrich H, Horvath J et al. (2006) DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med 174: 120–126

    Article  PubMed  CAS  Google Scholar 

  16. Hou X, Mrug M, Yoder BK et al. (2002) Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Investigation 109: 533–540

    Article  CAS  Google Scholar 

  17. Iannaccone A, Breuer DK, Wang XF et al. (2003) Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. J Medical Genetics 40: e118

    Article  CAS  Google Scholar 

  18. Ibanez-Tallon I, Heintz N, Omran H (2003) To beat or not to beat: roles of cilia in development and disease. Human Molecular Genetics 12:R27–35

    Article  PubMed  CAS  Google Scholar 

  19. Ibanez-Tallon I, Pagenstecher A, Fliegauf M et al. (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Human Molecular Genetics 13: 2133–41

    Article  PubMed  CAS  Google Scholar 

  20. Jeganathan D, Chodhari R, Meeks M et al. (2004) Loci for primary ciliary dyskinesia map to chromosome 16p12.1–12.2 and 15q13.1–15.1 in Faroe Islands and Israeli Druze genetic isolates. J Medical Genetics 41:233–40

    Article  CAS  Google Scholar 

  21. Karadag B, James AJ, Gultekin E et al. (1999) Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. Eur Respir J 13: 1402–1405

    Article  PubMed  CAS  Google Scholar 

  22. Kennedy MP, Omran H, Leigh MW et al. (2007) Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation (in press)

  23. Meeks M, Walne A, Spiden S et al. (2000) A locus for primary ciliary dyskinesia maps to chromosome 19q. J Medical Genetics 37: 241–244

    Article  CAS  Google Scholar 

  24. Nonaka S, Tanaka Y, Okada Y et al. (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95: 829–837

    Article  PubMed  CAS  Google Scholar 

  25. Olbrich H, Häffner K, Kispert A et al. (2002) Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genetics 30: 143–144

    Article  CAS  Google Scholar 

  26. Olbrich H, Horvath J, Fekete A et al. (2006) Axonemal localization of the dynein component DNAH5 is not altered in secondary ciliary dyskinesia. Pediatric Res 59: 418–422

    Article  CAS  Google Scholar 

  27. Omran H, Häffner K, Völkel A et al. (2000) Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Molecular Biol 23: 696–702

    CAS  Google Scholar 

  28. Pedersen M, Stafanger G (1983) Bronchopulmonary symptoms in primary ciliary dyskinesia. A clinical study of 27 patients. Eur J Respir Dis 127 [Suppl]: 118–128

    Google Scholar 

  29. Pennarun G, Escudier E, Chapelin C et al. (1999) Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Human Genetics 65: 1508–1519

    Article  CAS  Google Scholar 

  30. Van Dorp DB, Wright AF, Carothers AD et al. (1992) A family with RP3 type of X-linked retinitis pigmentosa: an association with ciliary abnormalities. Human Genetics 88: 331–334

    Google Scholar 

  31. Zariwala MA, Leigh MW, Ceppa F et al. (2006) Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation. Am J Respir Crit Care Med 174: 858–866

    Article  PubMed  CAS  Google Scholar 

  32. Zito I, Downes SM, Patel RJ et al. (2003) RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Medical Genetics 40: 609–615

    Article  CAS  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Danksagung

Für die langjährige Unterstützung des Forschungsprojektes gilt den Betroffenen und der Selbsthilfegruppe für „Primäre Ciliäre Dyskinesie und Kartagener Syndrom e.V.“ wie auch allen zusendenden Pädiatern, pädiatrischen Pulmologen und Pulmologen ein herzlicher Dank. Der Deutschen Forschungsgemeinschaft und der Michael Wagner-Stiftung „Kinderlachen“ gilt besonderer Dank für die Förderung des Projektes. Besonderer Dank gilt Herrn N. Loges für die Hilfe bei der Bildbearbeitung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Omran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omran, H. Diagnostik der primären ziliären Dyskinesie. Pneumologe 4, 267–275 (2007). https://doi.org/10.1007/s10405-007-0152-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-007-0152-1

Schlüsselwörter

Keywords

Navigation