Skip to main content
Log in

Bildgebung des Brustkorbs

Pleura mit Thoraxwand, Zwerchfell, Mediastinum

Imaging the chest

Pleura with thoracic wall, diaphragm and mediastinum

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Viele Veränderungen im Bereich von Thoraxwand, Zwerchfell und Pleura lassen sich bereits sonographisch klären. Ein Malignomstaging erfordert jedoch ein Schnittbildverfahren. Die MSCT ist hier das Verfahren der Wahl. Bei oberflächennahen thorakalen Prozessen ist die MRT mit überlegener Weichteildarstellung eine echte Alternative. Das gilt auch für Tumoren im Bereich der Thoraxapertur. Die mediastinale Routine(differenzial)diagnostik bzw. das Staging erfolgt mit der MSCT einschließlich Rekonstruktionen in beliebigen Ebenen. Die Analyse der bekannten differenzialdiagnostischen Parameter wie Dichtewerte, Morphologie und Kontrastmittelaufnahmeverhalten ist Standard. Der endobronchiale Ultraschall dürfte das Lymphknotenstaging und transbronchiale Biopsien erheblich verbessern. Der transösophageale Ultraschall wird gezielt für spezielle Fragestellungen im Mediastinum eingesetzt. Bei schwerer Kontrastmittelunverträglichkeit und schwerer Niereninsuffizienz kann die MRT als Alternativverfahren dienen. Die PET ist in der mediastinalen Lymphknotendiagnostik bereits etabliert. Die Zukunft in der thorakalen Diagnostik gehört der PET-CT mit der Kombination von Stoffwechseldarstellung plus exakte anatomische Zuordnung. Nachverarbeitungsverfahren der digitalen Datensätze umfassen z. B. virtuelle Endoskopien, 3D-Oberflächen- oder -Volumendarstellungen.

Abstract

Many changes in the thoracic wall, diaphragm, and pleura can be sufficiently evaluated by ultrasound, however, for the staging of malignancies MSCT is the modality of choice. Due to its superior soft tissue contrast resolution, MRI is established as a real alternative, particularly for localized pleural and extrapleural tumours as well as masses the superior sulcus. Currently, routine mediastinal (differential) evaluation and staging are performed by MSCT, including high resolution reconstruction images in various planes. Analysis of the established differential parameters such as density, mass morphology, and contrast enhancement is standard. New methods like transbronchial ultrasound will certainly improve the staging of lymph nodes and transbronchial biopsies. Transesophageal ultrasound is routinely performed in lymph node staging and assessment of tumor involvement in the thoracic aorta. Mediastinal MRI serves as an alternative to CT in cases of severe incompatibility of iodinated contrast material or renal insufficiency. PET is already established in the evaluation of mediastinal lymph nodes. The future of chest evaluation belongs to PET-CT due to its favourable combination of metabolism imaging and exact anatomical assignment. Computer post-processing programs of digital data sets allow for the creation of virtual endoscopies, 3-D surface and volume reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2a,b
Abb. 3a–c
Abb. 4
Abb. 5a–c
Abb. 6
Abb. 7a,b
Abb. 8a,b
Abb. 9
Abb. 10
Abb. 11a,b
Abb. 12 a
Abb. 13a,b
Abb. 14

Abbreviations

2D/3D:

2-/3-dimensional

BC:

Lungenkarzinom

CT:

Computertomographie

DRG:

„Diagnosis related groups“

FDG:

Fluorodeoxyglucose (PET-Tracer)

FOV:

„Feld-of-view“

HE:

Hounsfield-Einheiten (Dichtemessung CT)

HR:

„High resolution“ (hochauflösend)

i.v.:

Intravenös

MRI:

„Magnetic resonance imaging“

MRT:

Magnetresonanztomographie

MSCT:

„Multi slice computed tomography“ (Mehrzeilencomputertomographie)

PET:

Positronenemissionstomographie

PET-CT:

Kombinierte Positronenemissionstomographie mit Computertomographie

SI:

Signalintensität

VCS:

V. cava superior

Literatur

  1. Annema JT, Veselic M, Rabe KF (2005) EUS-guided FNA of centrally located lung tumors following a non-diagnostic bronchoscopy. Lung Cancer 48:357–361

    Article  PubMed  Google Scholar 

  2. Aziz ZA, Padley SP, Hansell DM (2004) CT techniques for imaging the lung: recommendations for multislice and single slice computed tomography. Eur J Radiol 52:119–136

    Article  PubMed  Google Scholar 

  3. Baum RP (2005) Nuklearmedizinische Diagnostik und Therapiekontrolle neuroendokriner Tumore (NET) mittels Rezeptor-PET/CT und Szintigraphie. Fortschr Röntgenstr 177:s1055

  4. Bittner RC (2002) Imaging techniques in the diagnosis of pleural diseases. In: Loddenkemper R, Antony VB (eds) Pleural diseases. Eur Respir Monogr 22:76–109

    Google Scholar 

  5. Buy JN, Ghossain MA, Poirson F et al. (1988) Computed tomography of mediastinal lymph nodes in nonsmall cell lung cancer. A new approach based on the lymphatic pathway of tumor spread. J Comput Assist Tomogr 12:545–552

    PubMed  Google Scholar 

  6. Cerfolio RJ, Ojha B, Bryant AS et al. (2004) The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg 78:1017–1023

    Article  PubMed  Google Scholar 

  7. Chooi WK, Matthews S, Bull MJ, Morcos SK (2005) Multislice computed tomography in staging lung cancer: the role of multiplanar image reconstruction. J Comput Assist Tomogr 29:357–360

    Article  PubMed  Google Scholar 

  8. Detterbeck FC, Falen S, Rivera MP et al. (2004) Seeking a home for a PET, part 2. Defining the appropriate place for positron emission tomography imaging in the staging of patients with suspected lung cancer. Chest 125:2300–2308

    Article  PubMed  Google Scholar 

  9. De Wever W, Vandecaveye V, Lanciotti S, Verschakelen JA (2004) Multidetector CT-generated virtual bronchoscopy: an illustrated review of the potential clinical indications. Eur Respir J 23:776–782

    Article  PubMed  Google Scholar 

  10. Eibenberger KL, Dock WI, Amman ME et al. (1994) Quatification of pleural effusion: sonography versus radiography. Radiology 191:681–684

    PubMed  Google Scholar 

  11. Erasmus JL, McAdams HP, Donelly LF, Spritzer CE (2000) MR imaging of mediastinal masses. MRI Clin North Am 8:59–89

    Google Scholar 

  12. Fink C, Plathow C, Klopp M et al. (2004) MRT des Lungenkarzinoms. Radiologe 44:435–443

    Article  PubMed  Google Scholar 

  13. Franco A, Mody NS, Meza MP (2005) Imaging evaluation of pediatric mediastinal masses. Radiol Clin N Am 43:325–353

    Article  PubMed  Google Scholar 

  14. Franzius C (2004) FDG PET: advantages for staging the mediastinum? Lung Cancer 45:69–74

    Article  Google Scholar 

  15. Fritscher-Ravens A, Davidson BL, Hauber HP et al. (2003) Endoscopic ultrasound, positron emission tomography, and computerized tomography for lung cancer. Am J Respir Crit Care Med 168:1293–1297

    Article  PubMed  Google Scholar 

  16. Galanski M (2003) Thorax. In: Freyschmidt J (Hrsg) Handbuch diagnostische Radiologie. Springer, Berlin Heidelberg New York Tokyo

  17. Gould MK, Kuschner WG, Rydzak CE et al. (2003) Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med 139:879–892

    PubMed  Google Scholar 

  18. Gupta S, Seaberg K, Wallace MJ et al. (2005) Imaging-guided percutaneous biopsy of mediastinal lesions: different approaches and anatomic considerations. RadioGraphics 25:763–788

    PubMed  Google Scholar 

  19. Halter G, Buck AK, Schirrmeister H et al. (2004) Lymph node staging in lung cancer using 18F FDG-PET. Thorac Cardiov Surg 52:96–101

    Article  Google Scholar 

  20. Hara M, Shiraki N, Itoh M et al. (2004) A problem in diagnosing N3 disease using FDG-PET in patients with lung cancer — high false positive rate with visual assessment. Ann Nucl Med 18:483–488

    PubMed  Google Scholar 

  21. Haramati LB, White CS (2000) MR imaging of lung cancer. MRI Clin North Am 8:43–57

    Google Scholar 

  22. Iochum S, Ludig T, Walter F, Sebbag H, Grosdidier G, Blum AG (2002) Imaging of diaphragmatic injury: a diagnostic challenge? RadioGraphics 22:103–118

    Google Scholar 

  23. Jeung MY, Gangi A, Gasser B et al. (1999) Imaging of chest wall disorders. RadioGraphics 19:617–637

    PubMed  Google Scholar 

  24. Jeung MY, Gasser B, Gangi A et al. (2002). Imaging of cystic masses of the mediastinum. RadioGraphics 22:79–93

    Google Scholar 

  25. Kamel E, Zwahlen D, Wyss MT et al. (2003) Whole-body 18F-FDG PET improves the management of patients with small-cell lung cancer. J Nucl Med 44:1911–1917

    PubMed  Google Scholar 

  26. Kavanagh PV, Stevenson AW, Chen MY, Clark PB (2004) Nonneoplastic diseases in the chest showing increased activity on FDG PET. AJR 183:1133–1141

    PubMed  Google Scholar 

  27. Kent MS, Port JL, Altorki NK (2004) Current state of imaging for lung cancer staging. Thorac Surg Clin 14:1–13

    Article  PubMed  Google Scholar 

  28. Mavi A, Lakhani P, Zhuang H et al. (2005) FDG-PET in characterizing solitary pulmonary nodules, assessing pleural diseases, and the initial staging, restaging, therapy planning, and monitoring response of lung cancer. Radiol Clin N Am 43:1–21

    Article  PubMed  Google Scholar 

  29. Mori K, Hirose T, Machida S et al. (1998) Helical computed tomography diagnosis of pleural dissemination in lung cancer: comparison of thick-section and thin-section helical computed tomography. J Thorac Imaging 13:211–218

    PubMed  Google Scholar 

  30. Mountain CF, Dresler CM (1997) Regional lymph node classification for lung cancer staging. Chest 111:1718–1723

    PubMed  Google Scholar 

  31. Ohno Y, Sugimura K, Hatabu H (2002) MR imaging of lung cancer. Eur J Radiol 44:172–181

    Article  PubMed  Google Scholar 

  32. Pannu HK, Wang KP, Borman TL, Bluemke DA (2000) MR imaging of mediastinal lymph nodes: evaluation using a superparamagnetic contrast agent. J Magn Reson Imaging 12:899–904

    Article  PubMed  Google Scholar 

  33. Rehbock B, Hieckel HG (2003) Chest examination protocol with a reduced dose using a multi-slice spiral CT. Fortschr Roentgenstr 175:963–966

    Google Scholar 

  34. Remy J, Remy-Jardin M, Artaud D, Fribourg M (1998) Multiplanar and three-dimensional reconstruction techniques in CT: impact on chest diseases. Eur Radiol 8:335–351

    Article  PubMed  Google Scholar 

  35. Sasaki R, Komaki R, Macapinlac H et al. (2005) 18F-Fluorodeoxyglucose uptake by positron emission tomography predicts outcome of NSCLC. J Clin Oncol 23:1136–1143

    Article  PubMed  Google Scholar 

  36. Schaefer-Prokop C, Prokop M (2002) New imaging techniques in the treatment guidelines for lung cancer. Eur Respir J 35 [Suppl]:71s–83s

  37. Shaham D, Skilakaki MG, Goitein O (2004) Imaging of the mediastinum: applications for thoracic surgery. Thorac Surg Clin 14:25–42

    Article  PubMed  Google Scholar 

  38. Sharma A, Fidias P, Hayman LA et al. (2004) Patterns of lymphadenopathy in thoracic malignancies. RadioGraphics 24:419–434

    PubMed  Google Scholar 

  39. Steinert HC (2004) PET und PET-CT — Stellenwert beim Lungenkarzinom. Nuklearmediziner 27:278–287

    Article  Google Scholar 

  40. Steinert HC, Santos Dellea MM, Burger C, Stahel R (2005) Therapy response evaluation in malignant pleural mesothelioma with integrated PET-CT imaging. Lung Cancer 49 [Suppl]:s33–35

    Google Scholar 

  41. Stroobants SG, D’Hoore I, Dooms C et al. (2003) Additional value of whole-body fluorodeoxyglucose positron emission tomography in the detection of distant metastases of non-small-cell lung cancer. Clin Lung Cancer 4:242–247

    PubMed  Google Scholar 

  42. Stroobants S, Verschakelen J, Vansteenkiste J (2003) Value of FDG-PET in the management of non-small cell lung cancer. Eur J Radiol 45:49–59

    Article  PubMed  Google Scholar 

  43. Tateishi U, Muller NL, Johkoh T et al. (2004) Primary mediastinal lymphoma: characteristic features of the various histological subtypes on CT. J Comput Assist Tomogr 28:782–789

    Article  PubMed  Google Scholar 

  44. Tateishi U, Gladish GW, Kusumoto M et al. (2003) Chest wall tumors: radiologic findings and pathologic correlation. Part 1. Benign tumors. RadioGraphics 23:1477–1490

    PubMed  Google Scholar 

  45. Tateishi U, Gladish GW, Kusumoto M et al. (2003) Chest wall tumors: radiologic findings and pathologic correlation. Part 2. Malignant tumors. RadioGraphics 23:1491–1508

    PubMed  Google Scholar 

  46. Uffmann M, Prokop M (2001) Multislice CT of the lung. Technique and clinical applications. Radiologe 41:240–247

    Article  PubMed  Google Scholar 

  47. Uffmann M, Schaefer-Prokop C (2004) Radiologische Diagnostik von Hodgkin- und Non-Hodgkin-Lymphomen des Thorax. Radiologe 44:444–456

    Article  PubMed  Google Scholar 

  48. Uhrmeister P, Allmann KH, Wertzel H et al. (1999) Chest wall infiltration by lung cancer: value of thin-sectional CT with different reconstruction algorithms. Eur Radiol 9:1304–1309

    Article  PubMed  Google Scholar 

  49. van Es HW (2001) MRI of the brachial plexus. Eur Radiol 11:325–336

    Article  PubMed  Google Scholar 

  50. Verschakelen JA, De Wever W, Bogaert J (2004) Role of computed tomography in lung cancer staging. Curr Opin Pulm Med 10:248–255

    Article  PubMed  Google Scholar 

  51. Wang ZJ, Reddy GP, Gotway MB et al. (2004) Malignant pleural mesothelioma: evaluation with CT, MR imaging, and PET. RadioGraphics 24:105–119

    PubMed  Google Scholar 

  52. Weyant MJ, Flores RM (2004) Imaging of pleural and chest wall tumors. Thorac Surg Clin 14:15–23

    Article  PubMed  Google Scholar 

  53. Yamagami T, Iida S, Kato T et al. (2003) Usefulness of new automated cutting needle for tissue-core biopsy of lung nodules under CT fluoroscopic guidance. Chest 124:147–154

    Article  PubMed  Google Scholar 

  54. Yang PC (2000) Ultrasound-guided transthoracic biopsy of the chest. Radiol Clin N Am 38:323–343

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Bittner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bittner, R.C., Pech, M. Bildgebung des Brustkorbs. Pneumologe 2, 436–449 (2005). https://doi.org/10.1007/s10405-005-0065-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-005-0065-9

Schlüsselwörter

Keywords

Navigation