Skip to main content
Log in

Staging des Bronchialkarzinoms

Rolle von CT und MRT

Staging of bronchogenic carcinoma

The rolls of CT and MRT

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Die Mehrzeilen-Spiral-CT ist das Verfahren der Wahl im Staging des Bronchialkarzinoms. Bei Schichtdicken <1 mm durch den gesamten Thorax sind auch mit der CT Rekonstruktionen in beliebiger Ebenen in Hochauflösung durchführbar, die vor allem für das T-Staging wertvoll sind. Darüber hinaus stehen verschiedene Nachverarbeitungsverfahren des digitalen Datensatzes zur Verfügung wie virtuelle Bronchoskopien und 3D-Oberflächen- oder Volumendarstellungen. Die MRT kommt zum Einsatz als Alternativverfahren bei schwerer KM-Unverträglichkeit (Jod) und kann primär bei Ausbrecher- und Pancoast-Tumoren wegen der im Vergleich zur CT besseren Weichteilkontrastauflösung eingesetzt werden. Unveränderte Schwachstelle des Stagings mit CT und MRT bleibt die Lymphknotenevaluation, wo die Größe als einziges valides Kriterium gilt. Bei bekannter Überlegenheit der PET im Lymphknotenstaging und auch im Nachweis extrathorakaler Tumormanifestationen deutet sich an, dass die Zukunft der kombinierten PET-CT als Ganzkörperuntersuchung gehört. Für den Ausschluss von Hirnmetastasen ist die KM-MRT unverändert die Methode des Wahl.

Abstract

Multislice-CT is established as the method of choice in the staging of lung cancer. Since CT images below 1 mm collimation are available throughout the chest, reconstruction images with high spatial resolution significantly improve T-staging. In addition, post-processing of the digital data set includes different animations such as virtual bronchoscopy, 3-D surface, or volume rendering, respectively. MRI only serves as a problem solving method in severe incompatibility of iodinated contrast material, and as a primary diagnostic tool in Pancoast and chest wall invading tumours, due to its superior soft tissue contrast resolution compared to CT. Both MRI and CT show poor results in N-staging, with size as the single proven criterion. Because PET demonstrated superiority in N-staging and, furthermore, in the diagnosis of extrathoracic metastases, the future probably belongs to the combined PET-CT system as a whole-body examination. For the diagnosis of brain metastases, contrast enhanced MRI is the method of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Abbreviations

3D:

dreidimensional

CT:

Computertomographie

MRI:

„magnetic resonance imaging“

MRT:

Magnetresonanztomographie

PET:

Positronenemissionstomographie

VATS:

„video assisted thoracic surgery“

MSCT:

„multi slice computed tomography“ (Mehrzeilencomputertomographie)

HE:

Hounsfield-Einheiten (Dichtemessung CT)

AJCC:

American Joint Committee on Cancer Staging

KM:

Kontrastmittel

VCS:

V. cava superior

FOV:

„field-of-view“

Literatur

  1. Aziz ZA, Padley SP, Hansell DM (2004) CT techniques for imaging the lung: recommendations for multislice and single slice computed tomography. Eur J Radiol 52:119–136

    Article  Google Scholar 

  2. Bae KT, Fuangtharnthip P, Prasad SR et al. (2003) Adrenal masses: CT characterization with histogram analysis method. Radiology 228:735–742

    PubMed  Google Scholar 

  3. Buy JN, Ghossain MA, Poirson F et al. (1988) Computed tomography of mediastinal lymph nodes in nonsmall cell lung cancer. A new approach based on the lymphatic pathway of tumor spread. J Comput Assist Tomogr 12:545–552

    Google Scholar 

  4. Cademartiri F, Pavone P (2003) Advantages of retrospective ECG-gating in cardio-thoracic imaging with 16-row multislice computed tomography. Acta Biomed Ateneo Parmense 74:126–130

    Google Scholar 

  5. Cerfolio RJ, Ojha B, Bryant AS et al. (2004) The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg 78:1017–1023

    Article  Google Scholar 

  6. De Wever W, Vandecaveye V, Lanciotti S, Verschakelen JA (2004) Multidetector CT-generated virtual bronchoscopy: an illustrated review of the potential clinical indications. Eur Respir J 23:776–782

    Article  Google Scholar 

  7. Fink C, Plathow C, Klopp M et al. (2004) MRT des Bronchialkarzinoms. Radiologe 44:435–443

    Article  Google Scholar 

  8. Gould MK, Kuschner WG, Rydzak CE et al. (2003) Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med 139:879–892

    Google Scholar 

  9. Hara M, Shiraki N, Itoh M et al. (2004) A problem in diagnosing N3 disease using FDG-PET in patients with lung cancer—high false positive rate with visual assessment. Ann Nucl Med 18:483–488

    Google Scholar 

  10. Mori K, Hirose T, Machida S et al. (1998) Helical computed tomography diagnosis of pleural dissemination in lung cancer: comparison of thick-section and thin-section helical computed tomography. J Thorac Imaging 13:211–218

    Google Scholar 

  11. Mountain CF, Dresler CM (1997) Regional lymph node classification for lung cancer staging. Chest 111:1718–1723

    CAS  PubMed  Google Scholar 

  12. Ohno Y, Sugimura K, Hatabu H (2002) MR imaging of lung cancer. Eur J Radiol 44:172–181

    Article  Google Scholar 

  13. Ohno Y, Sugimura K, Hatabu H (2003) Clinical oxygen-enhanced magnetic resonance imaging of the lung. Top Magn Reson Imaging 14:237–243

    Article  Google Scholar 

  14. Pannu HK, Wang KP, Borman TL, Bluemke DA (2000) MR imaging of mediastinal lymph nodes: evaluation using a superparamagnetic contrast agent. J Magn Reson Imaging 12:899–904

    Article  Google Scholar 

  15. Quint LE, Francis IR, Wahl RL et al. (1995) Preoperative staging of non-small-cell carcinoma of the lung: imaging methods. AJR 164:1349–1359

    Google Scholar 

  16. Rehbock B, Hieckel HG (2003) Chest examination protocol with a reduced dose using a multi-slice spiral CT. Fortschr Roentgenstr 175:963–966

    Google Scholar 

  17. Remy J, Remy-Jardin M, Artaud D, Fribourg M (1998) Multiplanar and three-dimensional reconstruction techniques in CT: impact on chest diseases. Eur Radiol 8:335–351

    Article  Google Scholar 

  18. Schaefer-Prokop C, Prokop M (2002) New imaging techniques in the treatment guidelines for lung cancer. Eur Respir J 35 [Suppl]:71s–83s

  19. Shimoyama K, Murata K, Takahashi M, Morita R (1997) Pulmonary hilar lymph node metastases from lung cancer: evaluation based on morphology at thin-section, incremental, dynamic CT. Radiology 203:187–195

    Google Scholar 

  20. Stroobants S, Verschakelen J, Vansteenkiste J (2003) Value of FDG-PET in the management of non-small cell lung cancer. Eur J Radiol 45:49–59

    Article  Google Scholar 

  21. Stroobants SG, D’Hoore I, Dooms C et al. (2003) Additional value of whole-body fluorodeoxyglucose positron emission tomography in the detection of distant metastases of non-small-cell lung cancer. Clin Lung Cancer 4:242–247

    Google Scholar 

  22. Suzuki K, Yamamoto M, Hasegawa Y et al. (2004) Magnetic resonance imaging and computed tomography in the diagnoses of brain metastases of lung cancer. Lung Cancer 46:357–360

    Article  Google Scholar 

  23. Takahashi M, Shimoyama K, Murata K et al. (1997) Hilar and mediastinal invasion of bronchogenic carcinoma: evaluation by thin-section electron-beam computed tomography. J Thorac Imaging 12:195–199

    Google Scholar 

  24. Uffmann M, Prokop M (2001) Multislice CT of the lung. Technique and clinical applications. Radiologe 41:240–247

    Article  Google Scholar 

  25. Uhrmeister P, Allmann KH, Wertzel H et al. (1999) Chest wall infiltration by lung cancer: value of thin-sectional CT with different reconstruction algorithms. Eur Radiol 9:1304–1309

    Article  CAS  PubMed  Google Scholar 

  26. van Beek EJ, Wild JM, Kauczor HU et al. (2004) Functional MRI of the lung using hyperpolarized 3-helium gas. J Magn Reson Imaging 20:540–554

    Article  Google Scholar 

  27. Verschakelen JA, De Wever W, Bogaert J (2004) Role of computed tomography in lung cancer staging. Curr Opin Pulm Med 10:248–255

    Article  Google Scholar 

  28. Vogt FM, Herborn CU, Hunold P et al. (2004) HASTE MRI versus chest radiography in the detection of pulmonary nodules: comparison with MDCT. AJR 183:71–78

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Bittner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bittner, R.C., Pech, M. Staging des Bronchialkarzinoms. Pneumologe 2, 102–110 (2005). https://doi.org/10.1007/s10405-005-0029-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-005-0029-0

Schlüsselwörter

Keywords

Navigation