Skip to main content
Log in

Water transport behaviors in a CTT-type nanotube system

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The shape of a nanochannel significantly affects mass transport. This study provides a new nanochannel model made from a concentric-twin tube (CTT), which can be made by inserting a carbon nanotube (CNT) into another identical CNT. The stable configuration of such a CTT has three subchannels containing different cross-sectional shapes. Molecular dynamic approach is applied to evaluate the transport performances of the confined water in the CTT. Molecular dynamics simulations indicate that the CTT made from (17,17) CNTs is the thinnest nanochannel for water transport. The three subchannels of a CTT have different linear speeds of water and different volume flow rates depending on the CTT’s cross-sectional shapes. Based on these characteristics, a fluid nanodevice requiring special transform performances, e.g., sieving the molecules with different sizes in a solution, can be designed from the new nanochannels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Alexiadis A, Kassinos S (2008) The density of water in carbon nanotubes. Chem Eng Sci 63:2047

    Article  Google Scholar 

  • Barton RA, Ilic B, Verbridge SS, Cipriany BR, Parpia JM, Craighead HG (2010) Fabrication of a nanomechanical mass sensor containing a nanofluidic channel. Nano Lett 10:2058

    Article  Google Scholar 

  • Berendsen H, Grigera J, Straatsma T (1987) The missing term in effective pair potentials. J Phys Chem 91:6269

    Article  Google Scholar 

  • Berezhkovskii A, Hummer G (2002) Single-file transport of water molecules through a carbon nanotube. Phys Rev Lett 89:064503

    Article  Google Scholar 

  • Cai K, Yin H, Qin QH, Li Y (2014) Self-excited oscillation of rotating double-walled carbon nanotubes. Nano Lett 14:2558

    Article  Google Scholar 

  • Cao W, Wang J, Ma M (2018) Mechano-nanofluidics: water transport through CNTs by mechanical actuation. Microfluid Nanofluid 22:1

    Article  Google Scholar 

  • Chen H, Ge Y, Ye S et al (2020) Water transport facilitated by carbon nanotubes enables a hygroresponsive actuator with negative hydrotaxis. Nanoscale 12:6104

    Article  Google Scholar 

  • Das A, Jayanthi S, Deepak HSMV et al (2010) Single-file diffusion of confined water inside SWNTs: an NMR study. ACS Nano 4:1687

    Article  Google Scholar 

  • Delhommelle J, Millié P (2001) Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol Phys 99:619

    Article  Google Scholar 

  • Ding H, Peng G, Mo S, Ma D, Sharshir SW, Yang N (2017) Ultra-fast vapor generation by a graphene nano-ratchet: a theoretical and simulation study. Nanoscale 9:19066

    Article  Google Scholar 

  • Feng J, Chen P, Zheng D, Zhong W (2018) Transport diffusion in deformed carbon nanotubes. Physica A 493:155

    Article  MathSciNet  MATH  Google Scholar 

  • Hadidi H, Kamali R (2020) Non-equilibrium molecular dynamics simulations of water transport through plate-and hourglass-shaped CNTs in the presence of pressure difference and electric field. Comput Mater Sci 185:109978

    Article  Google Scholar 

  • Hänggi P, Marchesoni F (2009) Artificial Brownian motors: controlling transport on the nanoscale. Rev Mod Phys 81:387

    Article  Google Scholar 

  • Ye H, Wang J, Zheng Y, Zhang H, Chen Z (2021) Machine learning for reparameterization of four-site water models: TIP4P-BG and TIP4P-BGT. Phys Chem Chem Phys 23:10164

    Article  Google Scholar 

  • Holt JK, Park HG, Wang Y et al (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034

    Article  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A 31:1695

    Article  Google Scholar 

  • Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188

    Article  Google Scholar 

  • Ihsanullah (2019) Carbon nanotube membranes for water purification: developments, challenges, and prospects for the future. Sep Purif Technol 209:307

    Article  Google Scholar 

  • Jue ML, Buchsbaum SF, Chen C et al (2020) Ultra-Permeable Single-Walled Carbon Nanotube Membranes with Exceptional Performance at Scale. Advanced Science 7:2001670

    Article  Google Scholar 

  • Kargar S, Moosavi A (2019) Bidirectional water transport through non-straight carbon nanotubes. J Mol Liq 276:39

    Article  Google Scholar 

  • Kou J, Lu H, Wu F, Fan J, Yao J (2014) Electricity resonance-induced fast transport of water through nanochannels. Nano Lett 14:4931

    Article  Google Scholar 

  • Li J, Kong X, Lu D, Liu Z (2015) Italicized carbon nanotube facilitating water transport: a molecular dynamics simulation. Sci Bull 60:1580

    Article  Google Scholar 

  • Li Y, Chen C, Meshot ER et al (2020) Autonomously responsive membranes for chemical warfare protection. Adv Func Mater 30:2000258

    Article  Google Scholar 

  • Liu Y, Wang Q (2005) Transport behavior of water confined in carbon nanotubes. Phys Rev B 72:085420

    Article  Google Scholar 

  • Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379:55

    Article  Google Scholar 

  • Lynch CI, Rao S, Sansom MS (2020) Water in nanopores and biological channels: a molecular simulation perspective. Chem Rev 120:10298

    Article  Google Scholar 

  • Mendonça BH, de Freitas DN, Köhler MH, Batista RJ, Barbosa MC, de Oliveira AB (2019) Diffusion behaviour of water confined in deformed carbon nanotubes. Physica A 517:491

    Article  Google Scholar 

  • Mendonça BH, Ternes P, Salcedo E, de Oliveira AB, Barbosa MC (2020) Water diffusion in rough carbon nanotubes. J Chem Phys 152:024708

    Article  Google Scholar 

  • Meng X (2019) A remarkable enhancement of water molecules permeation across a combined carbon nanotube. EPL (europhys Lett) 125:14001

    Article  Google Scholar 

  • Mukherjee B, Maiti PK, Dasgupta C, Sood A (2007) Strong correlations and Fickian water diffusion in narrow carbon nanotubes. J Chem Phys 126:124704

    Article  Google Scholar 

  • Nazari M, Davoodabadi A, Huang D, Luo T, Ghasemi H (2020) Transport phenomena in Nano/molecular confinements. ACS Nano 14:16348

    Article  Google Scholar 

  • Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1

    Article  MATH  Google Scholar 

  • Qin X, Yuan Q, Zhao Y, Xie S, Liu Z (2011) Measurement of the rate of water translocation through carbon nanotubes. Nano Lett 11:2173

    Article  Google Scholar 

  • Rezaee M, Namvarpour M, Yeganegi A, Ghassemi H (2020) Comprehensive study of monatomic fluid flow through elliptical carbon nanotubes. Phys Fluids 32:092006

    Article  Google Scholar 

  • Robinson F, Shahbabaei M, Kim D (2019) Deformation effect on water transport through nanotubes. Energies 12:4424

    Article  Google Scholar 

  • Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327

    Article  Google Scholar 

  • Sahimi M, Ebrahimi F (2019) Efficient transport between disjoint nanochannels by a water bridge. Phys Rev Lett 122:214506

    Article  Google Scholar 

  • Shima H, Umeno Y, Sato M (2015) Molecular dynamics study of radial corrugation in carbon nanotubes. Mech Adv Mater Struct 22:423

    Article  Google Scholar 

  • Striolo A (2006) The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett 6:633

    Article  Google Scholar 

  • Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472

    Article  Google Scholar 

  • Su J, Guo H (2012) Effect of nanochannel dimension on the transport of water molecules. J Phys Chem B 116:5925

    Article  Google Scholar 

  • Su J, Zhao Y, Fang C (2017) Hot channels engineer enhanced water transport. J Mater Sci 52:13504

    Article  Google Scholar 

  • Tu Y, Xiu P, Wan R, Hu J, Zhou R, Fang H (2009) Water-mediated signal multiplication with Y-shaped carbon nanotubes. Proc Natl Acad Sci 106:18120

    Article  Google Scholar 

  • Velioğlu S, Karahan HE, Goh K, Bae TH, Chen Y, Chew JW (2020) Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes. Small 16:1907575

    Article  Google Scholar 

  • Wang L, Wu H, Wang F (2017) Water desalination using nano screw pumps with a considerable processing rate. RSC Adv 7:20360

    Article  Google Scholar 

  • Whitby M, Quirke N (2007) Fluid flow in carbon nanotubes and nanopipes. Nat Nanotechnol 2:87

    Article  Google Scholar 

  • Xu Z, Wang L, Zheng Q (2008) Enhanced mechanical properties of prestressed multi-walled carbon nanotubes. Small 4:733

    Article  Google Scholar 

  • Xu B, Qiao Y, Park T, Tak M, Zhou Q, Chen X (2011) A conceptual thermal actuation system driven by interface tension of nanofluids. Energy Environ Sci 4:3632

    Article  Google Scholar 

  • Ye H, Zheng Y, Zhang Z, Zhang H, Chen Z (2016) Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving. Nanotechnology 27:315702

    Article  Google Scholar 

  • Ye H, Zheng Y, Zhou L, Zhao J, Zhang H, Chen Z (2017) Divergent effect of electric fields on the mechanical property of water-filled carbon nanotubes with an application as a nanoscale trigger. Nanotechnology 29:025707

    Article  Google Scholar 

  • Yu F, Shi H, Shi J, Teng K, Xu Z, Qian X (2020) High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer. J Membr Sci 616:118611

    Article  Google Scholar 

  • Zhang Z, Li S, Mi B, Wang J, Ding J (2020) Surface slip on rotating graphene membrane enables the temporal selectivity that breaks the permeability-selectivity trade-off. Sci Adv 6:9471

    Article  Google Scholar 

  • Zhou X, Cai H, Hu C, Shi J, Li Z, Cai K (2020) Analogous diamondene nanotube structure prediction based on molecular dynamics and first-principle calculations. Nanomaterials 10:846

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from National Natural Science Foundation, of China (Grant No. 12272239) and the Start-up fund for research from Harbin Institute of Technology, Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Cai or Qing-Hua Qin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, K., Zhou, X., Shi, J. et al. Water transport behaviors in a CTT-type nanotube system. Microfluid Nanofluid 26, 91 (2022). https://doi.org/10.1007/s10404-022-02598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-022-02598-0

Keywords

Navigation