Skip to main content
Log in

Shape effect of nanochannels on water mobility

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Confinement can induce unusual behaviors of water. Inspired by the fabrication of carbon nanotubes with noncircular cross sections, we performed molecular dynamics simulations to investigate the mobilities of water confined in carbon nanochannels with circular, square, and equilateral triangular cross sections over a variety of dimensions. We find that water exhibits disparate mobilities across different types of channels below 0.796 nm2. Notably, compared with the other two channels, water in equilateral triangular channels displays the greatest mobilities. Moreover, at 0.425 nm2, different ordered structures are found in the three channels, and water inside the square channel exhibits an extremely low mobility. It is also found that above 0.796 nm2, the mobilities along the tube axis of water converge to that of the bulk. These phenomena are understood by analyzing the structure, dynamics, and hydrogen bonding of water. Our work explores the mobilities of water across noncircular carbon nanochannels, which may expand the prospect of noncircular nanochannels in scientific studies and practical applications, such as desalination and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kaszuba, T. Rog, K. Bryl, I. Vattulainen, and M. Karttunen, Molecular dynamics simulations reveal fundamental role of water as factor determining affinity of binding of beta-blocker nebivolol to beta(2)-adrenergic receptor, J. Phys. Chem. B 114, 8374 (2010)

    Article  Google Scholar 

  2. B. L. de Groot and H. Grubmuller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF, Science 294, 2353 (2001)

    Article  ADS  Google Scholar 

  3. X. Gong, J. Li, H. Zhang, R. Wan, H. Lu, S. Wang, and H. P. Fang, Enhancement of water permeation across a nanochannel by the structure outside the channel, Phys. Rev. Lett. 101, 257801 (2008)

    Article  ADS  Google Scholar 

  4. X. Y. Li, Y. C. Shi, Y. L. Yang, H. L. Du, R. H. Zhou, and Y. L. Zhao, How does water-nanotube interaction influence water flow through the nanochannel? J. Chem. Phys. 136, 175101 (2012)

    Article  ADS  Google Scholar 

  5. M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Carbon nanotubes: Present and future commercial applications, Science 339, 535 (2013)

    Article  ADS  Google Scholar 

  6. D. Cohen-Tanugi and J. C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12, 3602 (2012).

    Article  ADS  Google Scholar 

  7. R. Z. Wan, J. Y. Li, H. J. Lu, and H. P. Fang, Controllable water channel gating of nanometer dimensions, J. Am. Chem. Soc. 127, 7166 (2005)

    Article  Google Scholar 

  8. Q. W. Chen, L. Y. Meng, Q. K. Li, D. Wang, W. Guo, Z. G. Shuai, and L. Jiang, Water transport and purification in nanochannels controlled by asymmetric wettability, Small 7, 2225 (2011)

    Article  Google Scholar 

  9. B. Corry, Water and ion transport through functionalised carbon nanotubes: Implications for desalination technology, Energy Environ. Sci. 4, 751 (2011)

    Article  Google Scholar 

  10. B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B 112, 1427 (2008)

    Article  Google Scholar 

  11. X. J. Gong, J. C. Li, K. Xu, J. F. Wang, and H. Yang, A controllable molecular sieve forNa+ andK+ ions, J. Am. Chem. Soc. 132, 1873 (2010)

    Article  Google Scholar 

  12. J. Dzubiella and J. P. Hansen, Electric-field-controlled water and ion permeation of a hydrophobic nanopore, J. Chem. Phys. 122, 234706 (2005)

    Article  ADS  Google Scholar 

  13. T. Panczyk, T. P. Warzocha, and P. J. Camp, A magnetically controlled molecular nanocontainer as a drug delivery system: The effects of carbon nanotube and magnetic nanoparticle parameters from Monte Carlo simulations, J. Phys. Chem. C 114, 21299 (2010)

    Article  Google Scholar 

  14. Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9, 288 (2014)

    Article  Google Scholar 

  15. S. Cambre, B. Schoeters, S. Luyckx, E. Goovaerts, and W. Wenseleers, Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3), Phys. Rev. Lett. 104, 207401 (2010)

    Article  ADS  Google Scholar 

  16. Y. Wang, Y. J. Zhao, and J. P. Huang, Giant pumping of single-file water molecules in a carbon nanotube, J. Phys. Chem. B 115, 13275 (2011)

    Article  Google Scholar 

  17. H. Lu, J. Li, X. Gong, R. Wan, L. Zeng, and H. P. Fang, Water permeation and wavelike density distributions inside narrow nanochannels, Phys. Rev. B 77, 174115 (2008)

    Article  ADS  Google Scholar 

  18. J. Y. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5, 351 (2011)

    Article  Google Scholar 

  19. G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414, 188 (2001)

    Article  ADS  Google Scholar 

  20. X. W. Meng, Y. Wang, Y. J. Zhao, and J. P. Huang, Gating of a water nanochannel driven by dipolar molecules, J. Phys. Chem. B 115, 4768 (2011)

    Article  Google Scholar 

  21. J. Y. Li, X. J. Gong, H. J. Lu, D. Li, and R. H. Zhou, Electrostatic gating of a nanometer water channel, Proc. Natl. Acad. Sci. USA 104, 3687 (2007)

    Article  ADS  Google Scholar 

  22. X. J. Gong, J. Y. Li, H. J. Lu, R. Z. Wan, J. C. Li, J. Hu, and H. P. Fang, A charge-driven molecular water pump, Nature Nanotech. 2, 709 (2007)

    Article  ADS  Google Scholar 

  23. Y. B. Chen, Y. H. Liu, Y. Zeng, W. Mao, L. Hu, Z. L. Mao, and H. Q. Xu, Optimal aspect ratio of endocytosed spherocylindrical nanoparticle, Front. Phys. 10, 108702 (2015)

    Google Scholar 

  24. R. García-Fandiño and M. S. P. Sansom, Designing biomimetic pores based on carbon nanotubes, Proc. Natl. Acad. Sci. USA 109, 6939 (2012)

    Article  ADS  Google Scholar 

  25. G. X. Guo, L. Zhang, and Y. Zhang, Molecular dynamics study of the infiltration of lipidwrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys. 10, 108601 (2015)

    Google Scholar 

  26. X. Y. Zhou, F. M. Wu, J. L. Kou, X. C. Nie, Y. Liu, and H. J. Lu, Vibrating-charge-driven water pump controlled by the deformation of the carbon nanotube, J. Phys. Chem. B 117, 11681 (2013)

    Article  Google Scholar 

  27. R. Qiao and N. R. Aluru, Atypical dependence of electroosmotic transport on surface charge in a single-wall carbon nanotube, Nano Lett. 3, 1013 (2003)

    Article  ADS  Google Scholar 

  28. G. X. Nie, Y. Wang, and J. P. Huang, Role of confinement in water solidification under electric fields, Front. Phys. 10, 106101 (2015)

    Article  Google Scholar 

  29. T. Qiu and J. P. Huang, Unprecedentedly rapid transport of single-file rolling water molecules, Front. Phys. 10, 106102 (2015)

    Article  Google Scholar 

  30. K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 412, 802 (2001)

    Article  ADS  Google Scholar 

  31. Y. Maniwa, H. Kataura, M. Abe, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, and Y. Okabe, Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes, Chem. Phys. Lett. 401, 534 (2005)

    Article  ADS  Google Scholar 

  32. R. J. Mashl, S. Joseph, N. R. Aluru, and E. Jakobsson, Anomalously immobilized water: A new water phase induced by confinement in nanotubes, Nano Lett. 3, 589 (2003)

    Article  ADS  Google Scholar 

  33. S. R. Venna and M. A. Carreon, Metal organic framework membranes for carbon dioxide separation, Chem. Eng. Sci. 124, 3 (2015)

    Article  Google Scholar 

  34. P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Q. Ma, B. Space, L. Wojtas, M. Eddaoudi, and M. J. Zaworotko, Porous materials with optimal adsorption thermodynamics and kinetics forCO2 separation, Nature 495, 80 (2013)

    Article  ADS  Google Scholar 

  35. S. Shirazian and S. N. Ashrafizadeh, Synthesis of substratemodified LTA zeolite membranes for dehydration of natural gas, Fuel 148, 112 (2015)

    Article  Google Scholar 

  36. G. Sneddon, A. Greenaway, and H. H. P. Yiu, The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide, Adv. Energy Mater. 4, 1301873 (2014)

    Google Scholar 

  37. K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J. B. Heymann, A. Engel, and Y. Fujiyoshi, Structural determinants of water permeation through aquaporin-1, Nature 407, 599 (2000)

    Article  ADS  Google Scholar 

  38. C. Q. Zhu, H. Li, and S. Meng, Transport behavior of water molecules through two-dimensional nanopores, J. Phys. Chem. 141, 18C528 (2014)

    Article  Google Scholar 

  39. C. Q. Zhu, H. Li, X. C. Zeng, E. G. Wang, and S. Meng, Quantized water transport: Ideal desalination through graphyne-4 membrane, Sci. Rep. 3, 3163 (2013)

    ADS  Google Scholar 

  40. T. Yanagishita, M. Sasaki, K. Nishio, and H. Masuda, Carbon nanotubes with a triangular cross-section, fabricated using anodic porous alumina as the template, Adv. Mater. 16, 429 (2004)

    Google Scholar 

  41. F. Xu, J. E. Wharton, and C. R. Martin, Template synthesis of carbon nanotubes with diamond-shaped cross sections, Small 3, 1718 (2007)

    Article  Google Scholar 

  42. J. Zang, A. Treibergs, Y. Han, and F. Liu, Geometric constant defining shape transitions of carbon nanotubes under pressure, Phys. Rev. Lett. 92, 105501 (2004)

    Article  ADS  Google Scholar 

  43. W. H. Mu, J. S. Cao, and Z. C. Ou-Yang, Shape transition of unstrained flattest single-walled carbon nanotubes under pressure, J. Appl. Phys. 115, 044512 (2014)

    Article  ADS  Google Scholar 

  44. A. Zobelli, A. Gloter, C. P. Ewels, and C. Colliex, Shaping single walled nanotubes with an electron beam, Phys. Rev. B 77, 045410 (2008)

    Article  ADS  Google Scholar 

  45. G. F. Wu, J. L. Wang, X. C. Zeng, H. Hu, and F. Ding, Controlling cross section of carbon nanotubes via selective hydrogenation, J. Phys. Chem. C 114, 11753 (2010)

    Article  Google Scholar 

  46. T. Qiu, X. W. Meng, and J. P. Huang, Nonstraight nanochannels transfer water faster than straight nanochannels, J. Phys. Chem. B 119, 1496 (2015)

    Article  Google Scholar 

  47. L. Hao, J. Y. Su, and H. X. Guo, Water permeation through a charged channel, J. Phys. Chem. B 117, 7685 (2013)

    Article  Google Scholar 

  48. B. Hess, C. Kutzner, D. Van De Spoel, and E. Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory. Comp. 4, 435 (2008)

    Article  Google Scholar 

  49. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91, 6269 (1987)

    Article  Google Scholar 

  50. T. A. Darden, D. M. York, and L. G. Pedersen, Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems, J. Chem. Phys. 98, 10089 (1993)

    Article  ADS  Google Scholar 

  51. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  52. W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  53. Z. J. He, J. Zhou, X. H. Lu, and B. Corry, Ice-like water structure in carbon nanotube (8,8) induces cationic hydration enhancement, J. Phys. Chem. C 117, 11412 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Xi Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, GX., Wang, Y. & Huang, JP. Shape effect of nanochannels on water mobility. Front. Phys. 11, 114702 (2016). https://doi.org/10.1007/s11467-016-0587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0587-0

Keywords

Navigation