Skip to main content

Advertisement

Log in

Microfluidic-based cancer cell separation using active and passive mechanisms

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The demand for on-chip cancer cell separation in biomedical, bio-sensor, bio-detection, personalized medicine, and clinical diagnostic fields has resulted in a variety of studies focusing on this theme. Accurate, high-throughput, and non-invasive separation of individual cells is also an essential enabling technique to move cellular biology, biomedicine, and biotechnology forward. Due to its great potential to solve bio-related problems, this cutting-edge technique has become a topic of concern for many studies on micro-manipulation methods. Hence, we present here a comprehensive review on recent developments of cancer cell separation utilizing various microfluidic-based methods, including dielectrophoresis-, magnetic-, acoustic-, and passive microfluidic-based ones. The review includes an overview of how these methods work along with a description of the experimental results using each method as well as their respective advantages and disadvantages. The paper is wrapped up with a discussion of the current challenges and future prospects in the cell separation technique. Our conclusion is that this technique will allow more opportunities for biomedical and bioengineering researchers to improve lab-on-a-chip technologies, and will have far-reaching implications for bio-related studies and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from (Becker et al. 1995). Copyright (1995) National Academy of Sciences

Fig. 2

Reprinted with permission from (Wang et al. 2000). Copyright (2000) American Chemical Society

Fig. 3

Reprinted with permission from (Park et al. 2005). Copyright (2005) Royal Society of Chemistry

Fig. 4

Reprinted with permission from (Moon et al. 2011). Copyright (2011) Royal Society of Chemistry

Fig. 5

Reprinted with permission from (Huang et al. 2013). Copyright (2013) Royal Society of Chemistry

Fig. 6

Reprinted with permission from (Chu et al. 2019). Copyright (2019) Elsevier

Fig. 7

Reprinted with permission from (Liu et al. 2007). Copyright (2007) Wiley

Fig. 8

Reprinted with permission from (Xu et al. 2011). Copyright (2011) Elsevier

Fig. 9

Reprinted with permission from (Earhart et al. 2014). Copyright (2014) Royal Society of Chemistry

Fig. 10

Reprinted with permission from (Reokrungruang et al. 2019). Copyright (2019) Elsevier

Fig. 11

Reprinted with permission from (Augustsson et al. 2012). Copyright (2012) American Chemical Society

Fig. 12

Reprinted with permission from (Wang et al. 2018). Copyright (2018) Elsevier

Fig. 13

Reprinted with permission from (Xu et al. 2009). Copyright (2009) American Chemical Society

Fig. 14

Reprinted with permission from (Kim et al. 2017). Copyright (2017) American Chemical Society

Fig. 15

Similar content being viewed by others

References

  • Adams JD, Ebbesen CL, Barnkob R et al (2012) High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping. J Micromech Microeng 22:75017

    Article  Google Scholar 

  • Aghaamoo M, Aghilinejad A, Chen X, Xu J (2019) On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Electrophoresis 40:1486–1493

    Article  Google Scholar 

  • Aghaamoo M, Zhang Z, Chen X, Xu J (2015) Deformability-based circulating tumor cell separation with conical-shaped microfilters: concept, optimization, and design criteria. Biomicrofluidics 9:34106

    Article  Google Scholar 

  • Alazzam A, Stiharu I, Bhat R, Meguerditchian A-N (2011) Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Electrophoresis 32:1327–1336

    Article  Google Scholar 

  • Alshareef M, Metrakos N, Juarez Perez E et al (2013) Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics 7:11803

    Article  Google Scholar 

  • An J, Lee J, Lee SH et al (2009) Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS). Anal Bioanal Chem 394:801–809

    Article  Google Scholar 

  • Antfolk M, Magnusson C, Augustsson P et al (2015) Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal Chem 87:9322–9328

    Article  Google Scholar 

  • Augustsson P, Magnusson C, Grenvall C, et al (2010) Extraction of circulating tumor cells from blood using acoustophoresis. In: 14th micro total analysis systems for chemistry and life sciences. Groningen, The Netherlands, pp 1592–1594

  • Augustsson P, Magnusson C, Nordin M et al (2012) Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal Chem 84:7954–7962

    Article  Google Scholar 

  • Banovetz JT, Li M, Pagariya D et al (2019) Defining cell cluster size by dielectrophoretic capture at an array of wireless electrodes of several distinct lengths. Micromachines 10:271

    Article  Google Scholar 

  • Becker FF, Wang X-B, Huang Y et al (1994) The removal of human leukaemia cells from blood using interdigitated microelectrodes. J Phys D 27:2659

    Article  Google Scholar 

  • Becker FF, Wang X-B, Huang Y et al (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci USA 92:860–864

    Article  Google Scholar 

  • Brechmann NA, Eriksson P-O, Eriksson K et al (2019) Pilot-scale process for magnetic bead purification of antibodies directly from non-clarified CHO cell culture. Biotechnol Prog 35:e2775

    Article  Google Scholar 

  • Chen J, Li J, Sun Y (2012) Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12:1753–1767

    Article  Google Scholar 

  • Chen Y, Tyagi D, Lyu M et al (2019) Regenerative NanoOctopus based on multivalent-aptamer-functionalized magnetic microparticles for effective cell capture in whole blood. Anal Chem 91:4017–4022

    Article  Google Scholar 

  • Cheng J, Sheldon EL, Wu L et al (1998) Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. Anal Chem 70:2321–2326

    Article  Google Scholar 

  • Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436:370–372

    Article  Google Scholar 

  • Chiu T-K, Chao A-C, Chou W-P et al (2018) Optically-induced-dielectrophoresis (ODEP)-based cell manipulation in a microfluidic system for high-purity isolation of integral circulating tumor cell (CTC) clusters based on their size characteristics. Sens Actuators B 258:1161–1173

    Article  Google Scholar 

  • Chou W-P, Wang H-M, Chang J-H et al (2017) The utilization of optically-induced-dielectrophoresis (ODEP)-based virtual cell filters in a microfluidic system for continuous isolation and purification of circulating tumour cells (CTCs) based on their size characteristics. Sens Actuators B 241:245–254

    Article  Google Scholar 

  • Chu P-Y, Liao C-J, Hsieh C-H et al (2019) Utilization of optically induced dielectrophoresis in a microfluidic system for sorting and isolation of cells with varied degree of viability: Demonstration of the sorting and isolation of drug-treated cancer cells with various degrees of anti-cancer drug resistance gene expression. Sens Actuators B 283:621–631

    Article  Google Scholar 

  • Cristofanilli M, Krishnamurthy S, Das CM et al (2008) Dielectric cell separation of fine needle aspirates from tumor xenografts. J Sep Sci 31:3732–3739

    Article  Google Scholar 

  • Curtis ASG, Casey B, Gallagher JO et al (2001) Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important? Biophys Chem 94:275–283

    Article  Google Scholar 

  • Dalili A, Samiei E, Hoorfar M (2019) A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst 144:87–113

    Article  Google Scholar 

  • Das CM, Becker F, Vernon S et al (2005) Dielectrophoretic segregation of different human cell types on microscope slides. Anal Chem 77:2708–2719

    Article  Google Scholar 

  • Didar TF, Tabrizian M (2010) Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices. Lab Chip 10:3043–3053

    Article  Google Scholar 

  • Ding X, Li P, Lin S-CS et al (2013) Surface acoustic wave microfluidics. Lab Chip 13:3626–3649

    Article  Google Scholar 

  • Ding X, Peng Z, Lin S-CS et al (2014) Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci USA 111:12992–12997

    Article  Google Scholar 

  • Du Z, Colls N, Cheng KH et al (2006) Microfluidic-based diagnostics for cervical cancer cells. Biosens Bioelectron 21:1991–1995

    Article  Google Scholar 

  • Duong P, Chung A, Bouchareychas L, Raffai RL (2019) Cushioned-density gradient ultracentrifugation (C-DGUC) improves the isolation efficiency of extracellular vesicles. PLoS ONE 14:e0215324

    Article  Google Scholar 

  • Earhart CM, Hughes CE, Gaster RS et al (2014) Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. Lab Chip 14:78–88

    Article  Google Scholar 

  • Estes MD, Ouyang B, Ho S, Ahn CH (2009) Isolation of prostate cancer cell subpopulations of functional interest by use of an on-chip magnetic bead-based cell separator. J Micromech Microeng 19:95015

    Article  Google Scholar 

  • Fan X, Jia C, Yang J et al (2015) A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens Bioelectron 71:380–386

    Article  Google Scholar 

  • Faraghat SA, Hoettges KF, Steinbach MK et al (2017) High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment. Proc Natl Acad Sci USA 114:4591–4596

    Article  Google Scholar 

  • Ferlay J, Colombet M, Soerjomataram I et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953. https://doi.org/10.1002/ijc.31937

    Article  Google Scholar 

  • Gascoyne PRC, Noshari J, Anderson TJ, Becker FF (2009) Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis 30:1388–1398

    Article  Google Scholar 

  • Gascoyne PRC, Wang X-B, Huang Y, Becker FF (1997) Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl 33:670–678

    Article  Google Scholar 

  • Gu Y, Chen C, Wang Z et al (2019) Plastic-based acoustofluidic devices for high-throughput, biocompatible platelet separation. Lab Chip 19:394–402

    Article  Google Scholar 

  • Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  Google Scholar 

  • Haddadi H, Naghsh-Nilchi H, Di Carlo D (2018) Separation of cancer cells using vortical microfluidic flows. Biomicrofluidics 12:14112

    Article  Google Scholar 

  • Hattori M, Nakanishi H, Yoshimura M et al (2019) Circulating tumor cells detection in tumor draining vein of breast cancer patients. Sci Rep 9:1–10

    Article  Google Scholar 

  • Hejazian M, Li W, Nguyen N-T (2015) Lab on a chip for continuous-flow magnetic cell separation. Lab Chip 15:959–970

    Article  Google Scholar 

  • Hola K, Markova Z, Zoppellaro G et al (2015) Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv 33:1162–1176

    Article  Google Scholar 

  • Hoshino K, Huang Y-Y, Lane N et al (2011) Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11:3449–3457

    Article  Google Scholar 

  • Hou HW, Warkiani ME, Khoo BL et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3:1259

    Article  Google Scholar 

  • Huang Q, Wang Y, Chen X et al (2018) Nanotechnology-based strategies for early cancer diagnosis using circulating tumor cells as a liquid biopsy. Nanotheranostics 2:21

    Article  Google Scholar 

  • Huang S-B, Wu M-H, Lin Y-H et al (2013) High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Lab Chip 13:1371–1383

    Article  Google Scholar 

  • Huang X, Tang J, Hu L et al (2019) Arrayed microfluidic chip for detection of circulating tumor cells and evaluation of drug potency. Anal Biochem 564:64–71

    Article  Google Scholar 

  • Huang Y, Wang X-B, Becker FF, Gascoyne PR (1997) Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J 73:1118–1129

    Article  Google Scholar 

  • Huang Y, Yang J, Wang X-B et al (1999) The removal of human breast cancer cells from hematopoietic CD34+ stem cells by dielectrophoretic field-flow-fractionation. J Hematother Stem Cell Res 8:481–490

    Article  Google Scholar 

  • Hughes MP (2016) Fifty years of dielectrophoretic cell separation technology. Biomicrofluidics 10:32801

    Article  Google Scholar 

  • Jack R, Hussain K, Rodrigues D et al (2017) Microfluidic continuum sorting of sub-populations of tumor cells via surface antibody expression levels. Lab Chip 17:1349–1358

    Article  Google Scholar 

  • Johansson L, Nikolajeff F, Johansson S, Thorslund S (2009) On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem 81:5188–5196

    Article  Google Scholar 

  • Kang Y, Li D-D, Kalams S, Eid J (2008) DC-Dielectrophoretic separation of biological cells by size. Biomed Microdevices 10:243–249. https://doi.org/10.1007/s10544-007-9130-y

    Article  Google Scholar 

  • Kim T-H, Lim M, Park J et al (2017) FAST: size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid–liquid interface. Anal Chem 89:1155–1162

    Article  Google Scholar 

  • Kostner S, van den Driesche S, Witarski W et al (2010) Guided dielectrophoresis: a robust method for continuous particle and cell separation. IEEE Sens J 10:1440–1446

    Article  Google Scholar 

  • Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–2980

    Article  Google Scholar 

  • Kwon KW, Choi SS, Lee SH et al (2007) Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip 7:1461–1468

    Article  Google Scholar 

  • Lee D-H, Li X, Ma N et al (2018) Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy. Lab Chip 18:1349–1358

    Article  Google Scholar 

  • Li D, Zielinski J, Kozubowski L, Xuan X (2018) Continuous sheath-free separation of drug-treated human fungal pathogen Cryptococcus neoformans by morphology in biocompatible polymer solutions. Electrophoresis 39:2362–2369

    Article  Google Scholar 

  • Li P, Mao Z, Peng Z et al (2015) Acoustic separation of circulating tumor cells. Proc Natl Acad Sci 112:4970–4975

    Article  Google Scholar 

  • Liang W, Liu L, Zhang H et al (2019) Optoelectrokinetics-based microfluidic platform for bioapplications: a review of recent advances. Biomicrofluidics 13:051502. https://doi.org/10.1063/1.5116737

    Article  Google Scholar 

  • Liang W, Wang Y, Zhang H, Liu L (2016) Characterization of the self-rotational motion of stored red blood cells by using optically-induced electrokinetics. Opt Lett 41:2763–2766

    Article  Google Scholar 

  • Liang W, Zhang K, Yang X et al (2015) Distinctive translational and self-rotational motion of lymphoma cells in an optically induced non-rotational alternating current electric field. Biomicrofluidics 9:014121. https://doi.org/10.1063/1.4913365

    Article  Google Scholar 

  • Liang W, Zhao Y, Liu L et al (2017) Determination of cell membrane capacitance and conductance via optically induced electrokinetics. Biophys J 113:1531–1539. https://doi.org/10.1016/j.bpj.2017.08.006

    Article  Google Scholar 

  • Liang W, Zhao Y, Liu L et al (2014) Rapid and label-free separation of Burkitt’s lymphoma cells from red blood cells by optically-induced electrokinetics. PLoS ONE 9:e90827. https://doi.org/10.1371/journal.pone.0090827

    Article  Google Scholar 

  • Liao C-J, Hsieh C-H, Chiu T-K et al (2018) An optically induced dielectrophoresis (ODEP)-based microfluidic system for the isolation of high-purity CD45neg/EpCAMneg cells from the blood samples of cancer patients—demonstration and initial exploration of the clinical significance of these cells. Micromachines 9:563

    Article  Google Scholar 

  • Lien K-Y, Chuang Y-H, Hung L-Y et al (2010) Rapid isolation and detection of cancer cells by utilizing integrated microfluidic systems. Lab Chip 10:2875–2886

    Article  Google Scholar 

  • Lim JY, Hansen JC, Siedlecki CA et al (2005) Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. J R Soc Interface 2:97–108

    Article  Google Scholar 

  • Liu G, He F, Li X et al (2019) Multi-level separation of particles using acoustic radiation force and hydraulic force in a microfluidic chip. Microfluid Nanofluidics 23:23

    Article  Google Scholar 

  • Liu R, Chen X, Du Y et al (2012) Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem 58:610–618

    Article  Google Scholar 

  • Liu Y-J, Guo S-S, Zhang Z-L et al (2007) A micropillar-integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis 28:4713–4722

    Article  Google Scholar 

  • Lu X, Martin A, Soto F et al (2019) Parallel label-free isolation of cancer cells using arrays of acoustic microstreaming traps. Adv Mater Technol 4:1800374

    Article  Google Scholar 

  • Luo T, Fan L, Zeng Y et al (2018) A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation. Lab Chip 18:1521–1532

    Article  Google Scholar 

  • Ma Z, Collins DJ, Ai Y (2016) Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave. Anal Chem 88:5316–5323

    Article  Google Scholar 

  • Ma Z, Zhou Y, Collins DJ, Ai Y (2017) Fluorescence activated cell sorting via a focused traveling surface acoustic beam. Lab Chip 17:3176–3185

    Article  Google Scholar 

  • Marx V (2015) Biophysics: using sound to move cells. Nat Methods 12:41

    Article  Google Scholar 

  • Meng S, Tripathy D, Frenkel EP et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162

    Article  Google Scholar 

  • Moon H-S, Kwon K, Kim S-I et al (2011) Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11:1118–1125

    Article  Google Scholar 

  • Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239

    Article  Google Scholar 

  • Nordin M, Laurell T (2012) Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis. Lab Chip 12:4610–4616

    Article  Google Scholar 

  • O’Hara SM, Moreno JG, Zweitzig DR et al (2004) Multigene reverse transcription-PCR profiling of circulating tumor cells in hormone-refractory prostate cancer. Clin Chem 50:826–835

    Article  Google Scholar 

  • Ozawa R, Iwadate H, Toyoda H et al (2019) A numbering-up strategy of hydrodynamic microfluidic filters for continuous-flow high-throughput cell sorting. Lab Chip 19:1828–1837

    Article  Google Scholar 

  • Park ES, Jin C, Guo Q et al (2016) Continuous flow deformability-based separation of circulating tumor cells using microfluidic ratchets. Small 12:1909–1919

    Article  Google Scholar 

  • Park J, Kim B, Choi SK et al (2005) An efficient cell separation system using 3D-asymmetric microelectrodes. Lab Chip 5:1264–1270

    Article  Google Scholar 

  • Petersson F, Åberg L, Swärd-Nilsson A-M, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79:5117–5123

    Article  Google Scholar 

  • Pierga J-Y, Bonneton C, Vincent-Salomon A et al (2004) Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res 10:1392–1400

    Article  Google Scholar 

  • Pradhan S, Smith AM, Garson CJ et al (2018) A microvascularized tumor-mimetic platform for assessing anti-cancer drug efficacy. Sci Rep 8:1–15

    Article  Google Scholar 

  • Qin X, Park S, Duffy SP et al (2015) Size and deformability based separation of circulating tumor cells from castrate resistant prostate cancer patients using resettable cell traps. Lab Chip 15:2278–2286

    Article  Google Scholar 

  • Rana A, Zhang Y, Esfandiari L (2018) Advancements in microfluidic technologies for isolation and early detection of circulating cancer-related biomarkers. Analyst 143:2971–2991

    Article  Google Scholar 

  • Rengan AK, Bukhari AB, Pradhan A et al (2015) In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett 15:842–848

    Article  Google Scholar 

  • Reokrungruang P, Chatnuntawech I, Dharakul T, Bamrungsap S (2019) A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening. Sens Actuators B 285:462–469

    Article  Google Scholar 

  • Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189. https://doi.org/10.1038/nature13118

    Article  Google Scholar 

  • Saei AA, Sabatier P, Tokat ÜG et al (2018) Comparative proteomics of dying and surviving cancer cells improves the identification of drug targets and sheds light on cell life/death decisions. Mol Cell Proteom 17:1144–1155

    Article  Google Scholar 

  • Saliba A-E, Saias L, Psychari E et al (2010) Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci USA 107:14524–14529

    Article  Google Scholar 

  • Sarigil O, Anil-Inevi M, Yilmaz E et al (2019) Label-free density-based detection of adipocytes of bone marrow origin using magnetic levitation. Analyst 144:2942–2953

    Article  Google Scholar 

  • Sarioglu AF, Aceto N, Kojic N et al (2015) A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods 12:685

    Article  Google Scholar 

  • Scher HI, Jia X, de Bono JS et al (2009) Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol 10:233–239

    Article  Google Scholar 

  • Sheng W, Chen T, Kamath R et al (2012) Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal Chem 84:4199–4206

    Article  Google Scholar 

  • Shi J, Huang H, Stratton Z et al (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:3354–3359

    Article  Google Scholar 

  • Shields CW IV, Reyes CD, López GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15:1230–1249

    Article  Google Scholar 

  • Sivagnanam V, Song B, Vandevyver C et al (2010) Selective breast cancer cell capture, culture, and immunocytochemical analysis using self-assembled magnetic bead patterns in a microfluidic chip. Langmuir 26:6091–6096

    Article  Google Scholar 

  • Sniadecki NJ, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell–substrate interactions. Ann Biomed Eng 34:59–74

    Article  Google Scholar 

  • Stott SL, Hsu C-H, Tsukrov DI et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA 107:18392–18397

    Article  Google Scholar 

  • Tada S, Omi Y, Eguchi M (2018) Analysis of the dielectrophoretic properties of cells using the isomotive AC electric field. Biomicrofluidics 12:44103

    Article  Google Scholar 

  • Tan SJ, Yobas L, Lee GYH et al (2009) Microdevice for the isolation and enumeration of cancer cells from blood. Biomed Microdevices 11:883–892

    Article  Google Scholar 

  • Tanaka T, Ishikawa T, Numayama-Tsuruta K et al (2012) Separation of cancer cells from a red blood cell suspension using inertial force. Lab Chip 12:4336–4343

    Article  Google Scholar 

  • Tian F, Cai L, Chang J et al (2018) Label-free isolation of rare tumor cells from untreated whole blood by interfacial viscoelastic microfluidics. Lab Chip 18:3436–3445. https://doi.org/10.1039/C8LC00700D

    Article  Google Scholar 

  • Tseng D, Volkmer J-P, Willingham SB et al (2013) Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci USA 110:11103–11108

    Article  Google Scholar 

  • Wang J, Lu W, Tang C et al (2015) Label-free isolation and mRNA detection of circulating tumor cells from patients with metastatic lung cancer for disease diagnosis and monitoring therapeutic efficacy. Anal Chem 87:11893–11900

    Article  Google Scholar 

  • Wang K, Zhou W, Lin Z et al (2018) Sorting of tumour cells in a microfluidic device by multi-stage surface acoustic waves. Sens Actuators B 258:1174–1183

    Article  Google Scholar 

  • Wang X-B, Yang J, Huang Y et al (2000) Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem 72:832–839

    Article  Google Scholar 

  • Warkiani ME, Guan G, Luan KB et al (2014) Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14:128–137

    Article  Google Scholar 

  • Wu M, Huang P-H, Zhang R et al (2018) Circulating tumor cell phenotyping via high-throughput acoustic separation. Small 14:1801131

    Article  Google Scholar 

  • Wu M, Ozcelik A, Rufo J et al (2019) Acoustofluidic separation of cells and particles. Microsyst Nanoeng 5:32

    Article  Google Scholar 

  • Xiang N, Zhang R, Han Y, Ni Z (2019) A multilayer polymer-film inertial microfluidic device for high-throughput cell concentration. Anal Chem 91:5461–5468

    Article  Google Scholar 

  • Xu H, Aguilar ZP, Yang L et al (2011) Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32:9758–9765

    Article  Google Scholar 

  • Xu Y, Phillips JA, Yan J et al (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 81:7436–7442

    Article  Google Scholar 

  • Yan S, Zhang J, Yuan D, Li W (2017) Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis 38:238–249

    Article  Google Scholar 

  • Yang F, Yang X, Jiang H et al (2010) Dielectrophoretic separation of colorectal cancer cells. Biomicrofluidics 4:13204

    Article  Google Scholar 

  • Yang J, Huang Y, Wang X-B et al (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal Chem 71:911–918

    Article  Google Scholar 

  • Yang R-J, Fu L-M, Hou H-H (2018) Review and perspectives on microfluidic flow cytometers. Sens Actuators B 266:26–45

    Article  Google Scholar 

  • Yin D, Zhang X, Han X et al (2019) Multi-stage particle separation based on microstructure filtration and dielectrophoresis. Micromachines 10:103

    Article  Google Scholar 

  • Yoo CE, Park J-M, Moon H-S et al (2016) Vertical magnetic separation of circulating tumor cells for somatic genomic-alteration analysis in lung cancer patients. Sci Rep 6:37392

    Article  Google Scholar 

  • Zborowski M, Chalmers JJ (2011) Rare cell separation and analysis by magnetic sorting. Anal Chem 83:8050–8056. https://doi.org/10.1021/ac200550d

    Article  Google Scholar 

  • Zhang J, Yuan D, Zhao Q et al (2018a) Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device. Sens Actuators B 267:14–25

    Article  Google Scholar 

  • Zhang K, Zhao L-B, Guo S-S et al (2010) A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells. Biosens Bioelectron 26:935–939

    Article  Google Scholar 

  • Zhang Y, Li W, Zhou Y et al (2018b) Detection of sepsis in patient blood samples using CD64 expression in a microfluidic cell separation device. Analyst 143:241–249

    Article  Google Scholar 

  • Zhao K, Larasati DBP, Li D (2019) Continuous cell characterization and separation by microfluidic alternating current dielectrophoresis. Anal Chem 91:6304–6314

    Article  Google Scholar 

  • Zhao Y, Xu D, Tan W (2017) Aptamer-functionalized nano/micro-materials for clinical diagnosis: isolation, release and bioanalysis of circulating tumor cells. Integr Biol 9:188–205

    Article  Google Scholar 

  • Zheng S, Lin H, Liu J-Q et al (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162:154–161

    Article  Google Scholar 

  • Zheng S, Lin HK, Lu B et al (2011) 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed Microdevices 13:203–213

    Article  Google Scholar 

  • Zhou J, Kulasinghe A, Bogseth A et al (2019) Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using a multi-flow microfluidic channel. Microsyst Nanoeng 5:1–12

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project Nos. 61973224, 61925307, U1613220, and 61803323), the Natural Science Foundation of Liaoning Province (Project Nos.: 2019-KF-01-15 and 2019-ZD-0673), and the Scientific Research Innovation Cultivation Project of Shenyang Jianzhu University (Project No.: CXPY2017012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenfeng Liang, Hemin Zhang or Lianqing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 1512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Liu, J., Yang, X. et al. Microfluidic-based cancer cell separation using active and passive mechanisms. Microfluid Nanofluid 24, 26 (2020). https://doi.org/10.1007/s10404-020-2331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-020-2331-x

Keywords

Navigation