Skip to main content
Log in

An innovative micro magnetic separator based on 3D micro-copper-coil exciting soft magnetic tips and FeNi wires for bio-target sorting

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Manipulation of cells or bio-targets is required in a variety of biological, diagnostic and therapeutic applications. In this paper, we present a novel magnetic separator for magnetic bead labeled-target sorting in microfluidic systems. This micro magnetic separator includes 3D micro copper coil, soft magnetic tips and FeNi wires. The magnetic tips and FeNi wires are first simulated and optimized by MagNet software to increase the magnetic force exerted on magnetic beads, and fabricated by microfabrication technology. The experiment results show the sorting ratio of the magnetic beads can be up to 92.5% with the current of 200 mA and the flow rate of 5 µL/min. The maximum sorting ratio can reach 78.4% for 100 CFU/mL E. coli O157:H7 sample with the current of 200 mA and the flow rate of 0.5 µL/min. On account of the miniaturization, high sorting efficiency, low excitation current, high level of detection automation and easy integration with micro magnetic sensor, this micro magnetic separation system can be a potential application in bio-target sorting and detecting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabási AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977):839

    Article  Google Scholar 

  • Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14(15):2739–2761

    Article  Google Scholar 

  • Barrett LM, Skulan AJ, Singh AK, Cummings EB, Fiechtner GJ (2005) Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels. Anal Chem 77(21):6798–6804

    Article  Google Scholar 

  • Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT (2010) Microfluidics for cell separation. Med Biol Eng Comput 48(10):999–1014

    Article  Google Scholar 

  • Carr C, Espy M, Nath P, Martin SL, Ward MD, Martin J (2009) Design, fabrication and demonstration of a magnetophoresis chamber with 25 output fractions. J Magn Magn Mater 321(10):1440–1445

    Article  Google Scholar 

  • Chung YC, Wu CM, Lin SH (2016) Particles sorting in micro channel using designed micro electromagnets of magnetic field gradient. J Magn Magn Mater 407:209–217

    Article  Google Scholar 

  • Deng T, Whitesides GM, Radhakrishnan M, Zabow G, Prentiss M (2001) Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography. Appl Phys Lett 78(12):1775–1777

    Article  Google Scholar 

  • Fonnum G, Johansson C, Molteberg A, Mørup S, Aksnes E (2005) Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J Magn Magn Mater 293(1):41–47

    Article  Google Scholar 

  • Fulcrand R, Jugieu D, Escriba C, Bancaud A, Bourrier D, Boukabache A, Gué AM (2009) Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species. J Micromech Microeng 19(10):105019

    Article  Google Scholar 

  • Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1(1):22–40

    Google Scholar 

  • Hejazian M, Nguyen NT (2015) Negative magnetophoresis in diluted ferrofluid flow. Lab Chip 15(14):2998–3005

    Article  Google Scholar 

  • Hejazian M, Nguyen NT (2016) Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays. Biomicrofluidics 10(4):044103

    Article  Google Scholar 

  • Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang X (2011) Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11(20):3449–3457

    Article  Google Scholar 

  • Ibekwe AM, Watt PM, Grieve CM, Sharma VK, Lyons SR (2002) Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157: H7 in dairy wastewater wetlands. Appl Environ Microbiol 68(10):4853–4862

    Article  Google Scholar 

  • Inglis DW, Riehn R, Sturm JC, Austin RH (2006) Microfluidic high gradient magnetic cell separation. J Appl Phys 99(8):08K101

    Article  Google Scholar 

  • Johansson L, Nikolajeff F, Johansson S, Thorslund S (2009) On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem 81(13):5188–5196

    Article  Google Scholar 

  • Joung J, Shen J, Grodzinski P (2000) Micropumps based on alternating high-gradient magnetic fields. IEEE Trans Magn 36(4):2012–2014

    Article  Google Scholar 

  • Kim KS, Park JK (2005) Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 5(6):657–664

    Article  Google Scholar 

  • Kotzar G, Freas M, Abel P, Fleischman A, Roy S, Zorman C, MMoran J, Melzak J (2002) Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 23(13):2737–2750

    Article  Google Scholar 

  • Krüger J, Singh K, O’Neill A, Jackson C, Morrison A, O’Brien P (2002) Development of a microfluidic device for fluorescence activated cell sorting. J Micromech Microeng 12(4):486

    Article  Google Scholar 

  • Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217

    Article  Google Scholar 

  • Li Y, Dalton C, Crabtree HJ, Nilsson G, Kaler KV (2007) Continuous dielectrophoretic cell separation microfluidic device. Lab Chip 7(2):239–248

    Article  Google Scholar 

  • Li C, Wu PM, Han J, Ahn CH (2008) A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter. Biomed Microdevices 10(5):671–679

    Article  Google Scholar 

  • Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem-Int Edit 45(16):2556–2560

    Article  Google Scholar 

  • Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12(1–4):1–16

    Article  Google Scholar 

  • Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38

    Article  Google Scholar 

  • Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256

    Article  Google Scholar 

  • Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974–980

    Article  Google Scholar 

  • Panaro NJ, Lou XJ, Fortina P, Kricka LJ, Wilding P (2005) Micropillar array chip for integrated white blood cell isolation and PCR. Biomol Eng 21(6):157–162

    Article  Google Scholar 

  • Petersson F, Åberg L, Swärd-Nilsson AM, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79(14):5117–5123

    Article  Google Scholar 

  • Prasad KV, Taiyab A, Jyothi D, Srinivas UK, Sreedhar AS (2007) Heat shock transcription factors regulate heat induced cell death in a rat histiocytoma. J Biosci 32(3):585–593

    Article  Google Scholar 

  • Ramadan Q, Samper V, Poenar D, Yu C (2004) On-chip micro-electromagnets for magnetic-based bio-molecules separation. J Magn Magn Mater 281(2–3):150–172

    Article  Google Scholar 

  • Ramadan Q, Samper V, Poenar DP, Yu C (2006) An integrated microfluidic platform for magnetic microbeads separation and confinement. Biosens Bioelectron 21(9):1693–1702

    Article  Google Scholar 

  • Ripka P, Janosek M (2010) Advances in magnetic field sensors. IEEE Sens J 10(6):1108–1116

    Article  Google Scholar 

  • Rong R, Choi JW, Ahn CH (2006) An on-chip magnetic bead separator for biocell sorting. J Micromech Microeng 16(12):2783

    Article  Google Scholar 

  • Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52

    Article  Google Scholar 

  • Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294–1302

    Article  Google Scholar 

  • Shikida M, Koyama M, Nagao N, Imai R, Honda H, Okochi M, Tsuchiya H, Sato K (2009) Agitation of magnetic beads by multi-layered flat coils. Sens Actuators B 137(2):774–780

    Article  Google Scholar 

  • Smistrup K, Hansen O, Bruus H, Hansen MF (2005) Magnetic separation in microfluidic systems using microfabricated electromagnets—experiments and simulations. J Magn Magn Mater 293(1):597–604

    Article  Google Scholar 

  • Smistrup K, Lund-Olesen T, Hansen MF, Tang PT (2006) Microfluidic magnetic separator using an array of soft magnetic elements. J Appl Phys 99(8):08P102

    Article  Google Scholar 

  • Sun W, Khosravi F, Albrechtsen H, Brovko LY, Griffiths MW (2002) Comparison of ATP and in vivo bioluminescence for assessing the efficiency of immunomagnetic sorbents for live Escherichia coli O157: H7 cells. J Appl Microbiol 92(6):1021–1027

    Article  Google Scholar 

  • Varshney M, Li Y, Srinivasan B, Tung S (2007) A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157: H7 in food samples. Sens Actuators B 128(1):99–107

    Article  Google Scholar 

  • Yu ZTF, Aw Yong KM, Fu J (2014) Microfluidic blood cell sorting: now and beyond. Small 10(9):1687–1703

    Article  Google Scholar 

  • Zhi S, Feng Z, Guo L, Lei C, Zhou Y (2017) Investigation of a novel MEMS orthogonal fluxgate sensor fabricated with Co-based amorphous ribbon core. Sens Actuators A 267:121–126

    Article  Google Scholar 

  • Zhou R, Wang C (2016) Microfluidic separation of magnetic particles with soft magnetic microstructures. Microfluid Nanofluid 20(3):48

    Article  Google Scholar 

  • Zhu GP, Hejiazan M, Huang X, Nguyen NT (2014) Magnetophoresis of diamagnetic microparticles in a weak magnetic field. Lab Chip 14(24):4609–4615

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by The National Natural Science Foundation of China (No.61273065), National Science and Technology Support Program (2012BAK08B05), Support fund of Shanghai Jiao Tong University (AgriX2015005), Support fund of Joint research center for advanced aerospace technology of Shanghai Academy of Spaceflight Technology-Shanghai Jiao Tong University (USCAST2015-2), Support fund of aerospace technology (15GFZ-JJ02-05), the Analytical and Testing Center in Shanghai Jiao Tong University, the Center for Advanced Electronic Materials and Devices in Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaotao Zhi or Chong Lei.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, S., Sun, X., Feng, Z. et al. An innovative micro magnetic separator based on 3D micro-copper-coil exciting soft magnetic tips and FeNi wires for bio-target sorting. Microfluid Nanofluid 23, 43 (2019). https://doi.org/10.1007/s10404-019-2215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-019-2215-0

Keywords

Navigation