Application of polydopamine in biomedical microfluidic devices

  • Pojchanun Kanitthamniyom
  • Yi Zhang


Polydopamine (PDA) is a bioinspired material with tremendous potential for applications involving surface modifications. By simply immersing the substrate in the dopamine monomer solution, we are able to apply a hydrophilic and biofunctional PDA coating that adheres strongly to any surface, including (super)hydrophobic surface, with unprecedented ease. Using PDA, almost any materials can be immobilized on the surface in a single step by mixing them with the dopamine monomer solution. This review provides a comprehensive coverage of the applications of PDA in the device fabrication, surface modification, and biofunctionalization of biomedical microfluidic devices. While discussing the advantages and limitations of PDA, we pay special attention to its unique properties that specifically benefit biomedical microfluidic devices. We also discuss other potential applications of PDA beyond the current development. Through this review, we hope to promote PDA and encourage a broader adoption of PDA by the microfluidic community.


Polydopamine Biomedical Microfluidic Surface modification Surface functionalization 



The authors would like to thank the start-up grant from the School of Mechanical and Aerospace Engineering at Nanyang Technological University. This work is also supported by the Ageing Research Institute for Society and Education (ARISE), Nanyang Technological University, Singapore (Grant Reference Number ARISE/2017/22), and Singapore Ministry of Education AcRF Tier 1 Grant RG49/17.


  1. Ball V (2014) Physicochemical perspective on “polydopamine” and “poly(catecholamine)” films for their applications in biomaterial coatings. Biointerphases 9:030801CrossRefGoogle Scholar
  2. Beckwith KM, Sikorski P (2013) Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels. Biofabrication 5:045009CrossRefGoogle Scholar
  3. Bi Y, Zhou H, Jia H, Wei P (2017) Polydopamine-mediated preparation of an enzyme-immobilized microreactor for the rapid production of wax ester. RSC Adv 7:12283–12291CrossRefGoogle Scholar
  4. Bunka DHJ, Stockley PG (2006) Aptamers come of age: at last. Nat Rev Microbiol 4:588–596CrossRefGoogle Scholar
  5. Chen X, L-l Zhang, J-h Sun, Li H, D-f Cui (2014) A facile and simple high-performance polydimethylsiloxane casting based on self-polymerization dopamine. J Micromech Microeng 24:095006CrossRefGoogle Scholar
  6. Cheng G, Zheng SY (2014) Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion. Sci Rep 4:6947CrossRefGoogle Scholar
  7. Cheng G, Hao SJ, Yu X, Zheng SY (2015) Nanostructured microfluidic digestion system for rapid high-performance proteolysis. Lab Chip 15:650–654CrossRefGoogle Scholar
  8. Chien HW, Tsai WB (2012) Fabrication of tunable micropatterned substrates for cell patterning via microcontact printing of polydopamine with poly(ethylene imine)-grafted copolymers. Acta Biomater 8:3678–3686CrossRefGoogle Scholar
  9. Chien HW, Kuo WH, Wang MJ, Tsai SW, Tsai WB (2012) Tunable micropatterned substrates based on poly(dopamine) deposition via microcontact printing. Langmuir 28:5775–5782CrossRefGoogle Scholar
  10. Chiou C-H, Shin DJ, Zhang Y, Wang T-H (2013) Topography-assisted electromagnetic platform for blood-to-PCR in a droplet. Biosens Bioelectron 50:91–99CrossRefGoogle Scholar
  11. Choi K, Ng AHC, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440CrossRefGoogle Scholar
  12. Chuah YJ, Koh YT, Lim K, Menon NV, Wu Y, Kang Y (2015a) Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci Rep 5:18162CrossRefGoogle Scholar
  13. Chuah YJ, Kuddannaya S, Lee MH, Zhang Y, Kang Y (2015b) The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. Biomater Sci 3:383–390CrossRefGoogle Scholar
  14. Della Vecchia NF, Avolio R, Alfè M, Errico ME, Napolitano A, d’Ischia M (2013) Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Adv Funct Mater 23:1331–1340CrossRefGoogle Scholar
  15. Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246CrossRefGoogle Scholar
  16. d’Ischia M, Napolitano A, Pezzella A, Meredith P, Sarna T (2009) Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angew Chem 48:3914–3921CrossRefGoogle Scholar
  17. d’Ischia M, Napolitano A, Ball V, Chen CT, Buehler MJ (2014) Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy. Acc Chem Res 47:3541–3550CrossRefGoogle Scholar
  18. Dong Z, Zhang F, Wang D, Liu X, Jin J (2015) Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J Solid State Chem 224:88–93CrossRefGoogle Scholar
  19. Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2013) Perspectives on poly(dopamine). Chem Sci 4:3796–3802CrossRefGoogle Scholar
  20. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRefGoogle Scholar
  21. Eteshola E, Leckband D (2001) Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens Actuators B Chem 72:129–133CrossRefGoogle Scholar
  22. Fan D, Wu C, Wang K, Gu X, Liu Y, Wang E (2016) A polydopamine nanosphere based highly sensitive and selective aptamer cytosensor with enzyme amplification. Chem Commun 52:406–409CrossRefGoogle Scholar
  23. Feng H, Zhang Q, Ma H, Zheng B (2015) An ultralow background substrate for protein microarray technology. Analyst 140:5627–5633CrossRefGoogle Scholar
  24. Fuard D, Tzvetkova-Chevolleau T, Decossas S, Tracqui P, Schiavone P (2008) Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron Eng 85:1289–1293CrossRefGoogle Scholar
  25. Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5:425–432CrossRefGoogle Scholar
  26. Gomez FA (2008) Biological applications of microfluidics. Wiley, HobokenGoogle Scholar
  27. Hillborg H, Ankner JF, Gedde UW, Smith GD, Yasuda HK, Wikström K (2000) Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 41:6851–6863CrossRefGoogle Scholar
  28. Ho CC, Ding SJ (2013) The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. J Mater Sci 24:2381–2390Google Scholar
  29. Ho C-C, Ding S-J (2014) Structure, properties and applications of mussel-inspired polydopamine. J Biomed Nanotechnol 10:3063–3084CrossRefGoogle Scholar
  30. Hong S, Kim KY, Wook HJ, Park SY, Lee KD, Lee DY, Lee H (2011) Attenuation of the in vivo toxicity of biomaterials by polydopamine surface modification. Nanomedicine 6:793–801CrossRefGoogle Scholar
  31. Hong D, Bae K, Hong SP, Park JH, Choi IS, Cho WK (2014) Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates. Chem Commun 50:11649–11652CrossRefGoogle Scholar
  32. Jebrail MJ, Bartsch MS, Patel KD (2012) Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine. Lab Chip 12:2452–2463CrossRefGoogle Scholar
  33. Jiang J, Zhu L, Zhu L, Zhu B, Xu Y (2011) Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 27:14180–14187CrossRefGoogle Scholar
  34. Jolly P et al (2016) DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosens Bioelectron 79:313–319CrossRefGoogle Scholar
  35. Jun D-R, Choi YR, Kang RH, Choi S-W (2016) Polydimethylsiloxane fluidic device with polydopamine-coated inner channel for production of uniform droplets. Macromol Mater Eng 301:1044–1048CrossRefGoogle Scholar
  36. Kang SM et al (2010) One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew Chem 49:9401–9404CrossRefGoogle Scholar
  37. Kang SM et al (2012) One-step multipurpose surface functionalization by adhesive catecholamine. Adv Funct Mater 22:2949–2955CrossRefGoogle Scholar
  38. Kim BH et al (2011) Mussel-inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold. Adv Mater 23:5618–5622CrossRefGoogle Scholar
  39. Kim HW, McCloskey BD, Choi TH, Lee C, Kim MJ, Freeman BD, Park HB (2013a) Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry. ACS Appl Mater Interfaces 5:233–238CrossRefGoogle Scholar
  40. Kim M, Song KH, Doh J (2013b) PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels. Colloids Surf B 112:134–138CrossRefGoogle Scholar
  41. Ku SH, Park CB (2010) Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 31:9431–9437CrossRefGoogle Scholar
  42. Ku SH, Lee JS, Park CB (2010a) Spatial control of cell adhesion and patterning through mussel-inspired surface modification by polydopamine. Langmuir 26:15104–15108CrossRefGoogle Scholar
  43. Ku SH, Ryu J, Hong SK, Lee H, Park CB (2010b) General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 31:2535–2541CrossRefGoogle Scholar
  44. Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30CrossRefGoogle Scholar
  45. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRefGoogle Scholar
  46. Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–434CrossRefGoogle Scholar
  47. Lee M, Ku SH, Ryu J, Park CB (2010) Mussel-inspired functionalization of carbon nanotubes for hydroxyapatite mineralization. J Mater Chem 20:8848CrossRefGoogle Scholar
  48. Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132CrossRefGoogle Scholar
  49. Leung JM et al (2015) Surface modification of poly(dimethylsiloxane) with a covalent antithrombin–heparin complex for the prevention of thrombosis: use of polydopamine as bonding agent. J Mater Chem 3:6032–6036CrossRefGoogle Scholar
  50. Liang RP, Meng XY, Liu CM, Qiu JD (2011) PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis 32:3331–3340CrossRefGoogle Scholar
  51. Liang Y et al (2017) Metal-polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles. Nanoscale 9:5323–5328CrossRefGoogle Scholar
  52. Liebscher J et al (2013) Structure of polydopamine: a never-ending story? Langmuir 29:10539–10548CrossRefGoogle Scholar
  53. Ling Y, Li W, Wang B, Gan W, Zhu C, Brady MA, Wang C (2016) Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness. RSC Adv 6:31037–31045CrossRefGoogle Scholar
  54. Liu Q, Yu B, Ye W, Zhou F (2011) Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromol Biosci 11:1227–1234CrossRefGoogle Scholar
  55. Liu C-M, Liang R-P, Wang X-N, Wang J-W, Qiu J-D (2013a) A versatile polydopamine platform for facile preparation of protein stationary phase for chip-based open tubular capillary electrochromatography enantioseparation. J Chromatogr Sci 1294:145–151CrossRefGoogle Scholar
  56. Liu R, Guo Y, Odusote G, Qu F, Priestley RD (2013b) Core-shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. ACS Appl Mater Interfaces 5:9167–9171CrossRefGoogle Scholar
  57. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (2013c) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25:1353–1359CrossRefGoogle Scholar
  58. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115CrossRefGoogle Scholar
  59. Loget G, Wood JB, Cho K, Halpern AR, Corn RM (2013) Electrodeposition of polydopamine thin films for DNA patterning and microarrays. Anal Chem 85:9991–9995CrossRefGoogle Scholar
  60. Lu YW, Lin PT, Pai CS (2007) Polydimethylsiloxane (PDMS) bonding strength characterization by a line force model in blister tests. Paper presented at the transducers 2007–2007 international solid-state sensors, actuators and microsystems conference, 10–14 June 2007Google Scholar
  61. Lynge ME, van der Westen R, Postma A, Stadler B (2011) Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale 3:4916–4928CrossRefGoogle Scholar
  62. Lynge ME, Schattling P, Stadler B (2015) Recent developments in poly(dopamine)-based coatings for biomedical applications. Nanomedicine 10:2725–2742CrossRefGoogle Scholar
  63. Madhurakkat Perikamana SK, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, Shin H (2015) Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromol 16:2541–2555CrossRefGoogle Scholar
  64. Mata A, Fleischman AJ, Roy S (2005) Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 7:281–293CrossRefGoogle Scholar
  65. McCloskey BD et al (2010) Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer 51:3472–3485CrossRefGoogle Scholar
  66. Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80:1614–1619CrossRefGoogle Scholar
  67. Ng AHC, Choi K, Luoma RP, Robinson JM, Wheeler AR (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84:8805–8812CrossRefGoogle Scholar
  68. Ng AHC, Chamberlain MD, Situ H, Lee V, Wheeler AR (2015) Digital microfluidic immunocytochemistry in single cells. Nat Commun 6:7513CrossRefGoogle Scholar
  69. Pipper J, Inoue M, Ng LFP, Neuzil P, Zhang Y, Novak L (2007) Catching bird flu in a droplet. Nat Med 13:1259–1263CrossRefGoogle Scholar
  70. Pipper J, Zhang Y, Neuzil P, Hsieh TM (2008) Clockwork PCR including sample preparation. Angew Chem 47:3900–3904CrossRefGoogle Scholar
  71. Postma A, Yan Y, Wang Y, Zelikin AN, Tjipto E, Caruso F (2009) Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chem Mater 21:3042–3044CrossRefGoogle Scholar
  72. Qiang W, Hu H, Sun L, Li H, Xu D (2015) Aptamer/polydopamine nanospheres nanocomplex for in situ molecular sensing in living cells. Anal Chem 87:12190–12196CrossRefGoogle Scholar
  73. Ren K, Dai W, Zhou J, Su J, Wu H (2011) Whole-teflon microfluidic chips. Proc Natl Acad Sci 108:8162–8166CrossRefGoogle Scholar
  74. Resnick PR (1989) The preparation and properties of a new family of amorphous fluoropolymers: teflon® AF. J Fluor Chem 45:100CrossRefGoogle Scholar
  75. Rivera JG, Messersmith PB (2012) Polydopamine-assisted immobilization of trypsin onto monolithic structures for protein digestion. J Sep Sci 35:1514–1520CrossRefGoogle Scholar
  76. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189CrossRefGoogle Scholar
  77. Salazar P, Martín M, Gonzalez-Mora JL (2016) Polydopamine-modified surfaces in biosensor applications. In: Méndez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications and educational aspects. Formatex Research Center, pp 385–396Google Scholar
  78. Shah GJ, Ohta AT, Chiou EPY, Wu MC (2009) EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9:1732–1739CrossRefGoogle Scholar
  79. Shamsi MH, Choi K, Ng AHC, Wheeler AR (2014) A digital microfluidic electrochemical immunoassay. Lab Chip 14:547–554CrossRefGoogle Scholar
  80. Shen B, Xiong B, Wu H (2015) Convenient surface functionalization of whole-teflon chips with polydopamine coating. Biomicrofluidics 9:044111CrossRefGoogle Scholar
  81. Shi X, Ostrovidov S, Shu Y, Liang X, Nakajima K, Wu H, Khademhosseini A (2014) Microfluidic generation of polydopamine gradients on hydrophobic surfaces. Langmuir 30:832–838CrossRefGoogle Scholar
  82. Shin SR et al (2016) Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem 88:10019–10027CrossRefGoogle Scholar
  83. Sileika TS, Kim HD, Maniak P, Messersmith PB (2011) Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces 3:4602–4610CrossRefGoogle Scholar
  84. Sun K et al (2012) Mussel-inspired anchoring for patterning cells using polydopamine. Langmuir 28:2131–2136CrossRefGoogle Scholar
  85. Tsai W-B, Chen W-T, Chien H-W, Kuo W-H, Wang M-J (2011) Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering. Acta Biomater 7:4187–4194CrossRefGoogle Scholar
  86. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  87. Wang Y et al (2015a) An ultra hydrophilic dendrimer-modified magnetic graphene with a polydopamine coating for the selective enrichment of glycopeptides. J Mater Chem B 3:8711–8716CrossRefGoogle Scholar
  88. Wang Z et al (2015b) Bioadhesive microporous architectures by self-assembling polydopamine microcapsules for biomedical applications. Chem Mater 27:848–856CrossRefGoogle Scholar
  89. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34:747–754CrossRefGoogle Scholar
  90. Weinhold M, Soubatch S, Temirov R, Rohlfing M, Jastorff B, Tautz FS, Doose C (2006) Structure and bonding of the multifunctional amino acid l-DOPA on Au(110). J Phys Chem Ref Data 110:23756–23769CrossRefGoogle Scholar
  91. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  92. Wöllenstein J, Plaza JA, Cané C, Min Y, Böttner H, Tuller HL (2003) A novel single chip thin film metal oxide array. Sens Actuators B Chem 93:350–355CrossRefGoogle Scholar
  93. Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447CrossRefGoogle Scholar
  94. Wood JB, Szyndler MW, Halpern AR, Cho K, Corn RM (2013) Fabrication of DNA microarrays on polydopamine-modified gold thin films for SPR imaging measurements. Langmuir 29:10868–10873CrossRefGoogle Scholar
  95. Yan Y, Zheng Z, Deng C, Li Y, Zhang X, Yang P (2013) Hydrophilic polydopamine-coated graphene for metal ion immobilization as a novel immobilized metal ion affinity chromatography platform for phosphoproteome analysis. Anal Chem 85:8483–8487CrossRefGoogle Scholar
  96. Yang HC, Wu QY, Wan LS, Xu ZK (2013) Polydopamine gradients by oxygen diffusion controlled autoxidation. Chem Commun 49:10522–10524CrossRefGoogle Scholar
  97. Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258CrossRefGoogle Scholar
  98. You I et al (2012) Polydopamine microfluidic system toward a two-dimensional, gravity-driven mixing device. Angew Chem 51:6126–6130CrossRefGoogle Scholar
  99. You I, Lee TG, Nam YS, Lee H (2014) Fabrication of a micro-omnifluidic device by omniphilic/omniphobic patterning on nanostructured surfaces. ACS Nano 8:9016–9024CrossRefGoogle Scholar
  100. Yu B, Liu J, Liu S, Zhou F (2010) Pdop layer exhibiting zwitterionicity: a simple electrochemical interface for governing ion permeability. Chem Commun 46:5900–5902CrossRefGoogle Scholar
  101. Zhang Y, Nguyen N-T (2017) Magnetic digital microfluidics: a review. Lab Chip 17:994–1008CrossRefGoogle Scholar
  102. Zhang Y, Wang TH (2013) Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays. Adv Mater 25:2903–2908CrossRefGoogle Scholar
  103. Zhang Y, Park S, Liu K, Tsuan J, Yang S, Wang T-H (2011) A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip 11:398–406CrossRefGoogle Scholar
  104. Zhang W, Yang FK, Han Y, Gaikwad R, Leonenko Z, Zhao B (2013a) Surface and tribological behaviors of the bioinspired polydopamine thin films under dry and wet conditions. Biomacromol 14:394–405CrossRefGoogle Scholar
  105. Zhang Y, Shin DJ, Wang T-H (2013b) Serial dilution via surface energy trap-assisted magnetic droplet manipulation. Lab Chip 13:4827–4831CrossRefGoogle Scholar
  106. Zhang Y, Geng X, Ai J, Gao Q, Qi H, Zhang C (2015) Signal amplification detection of DNA using a sensor fabricated by one-step covalent immobilization of amino-terminated probe DNA onto the polydopamine-modified screen-printed carbon electrode. Sens Actuators B Chem 221:1535–1541CrossRefGoogle Scholar
  107. Zhang P, He M, Zeng Y (2016) Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 16:3033–3042CrossRefGoogle Scholar
  108. Zhao Y, Liu X, Li J, Qiang W, Sun L, Li H, Xu D (2016) Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin. Talanta 150:81–87CrossRefGoogle Scholar
  109. Zhou P, Deng Y, Lyu B, Zhang R, Zhang H, Ma H, Lyu Y, Wei S (2014) Rapidly-deposited polydopamine coating via high temperature and vigorous stirring: formation, characterization and biofunctional evaluation. PLoS ONE 9(11):e113087CrossRefGoogle Scholar
  110. Zou Z, Jang A, MacKnight E, Wu P-M, Do J, Bishop PL, Ahn CH (2008) Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement. Sens Actuators B Chem 134:18–24CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations