Application of polydopamine in biomedical microfluidic devices
- 175 Downloads
Abstract
Polydopamine (PDA) is a bioinspired material with tremendous potential for applications involving surface modifications. By simply immersing the substrate in the dopamine monomer solution, we are able to apply a hydrophilic and biofunctional PDA coating that adheres strongly to any surface, including (super)hydrophobic surface, with unprecedented ease. Using PDA, almost any materials can be immobilized on the surface in a single step by mixing them with the dopamine monomer solution. This review provides a comprehensive coverage of the applications of PDA in the device fabrication, surface modification, and biofunctionalization of biomedical microfluidic devices. While discussing the advantages and limitations of PDA, we pay special attention to its unique properties that specifically benefit biomedical microfluidic devices. We also discuss other potential applications of PDA beyond the current development. Through this review, we hope to promote PDA and encourage a broader adoption of PDA by the microfluidic community.
Keywords
Polydopamine Biomedical Microfluidic Surface modification Surface functionalizationNotes
Acknowledgements
The authors would like to thank the start-up grant from the School of Mechanical and Aerospace Engineering at Nanyang Technological University. This work is also supported by the Ageing Research Institute for Society and Education (ARISE), Nanyang Technological University, Singapore (Grant Reference Number ARISE/2017/22), and Singapore Ministry of Education AcRF Tier 1 Grant RG49/17.
References
- Ball V (2014) Physicochemical perspective on “polydopamine” and “poly(catecholamine)” films for their applications in biomaterial coatings. Biointerphases 9:030801CrossRefGoogle Scholar
- Beckwith KM, Sikorski P (2013) Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels. Biofabrication 5:045009CrossRefGoogle Scholar
- Bi Y, Zhou H, Jia H, Wei P (2017) Polydopamine-mediated preparation of an enzyme-immobilized microreactor for the rapid production of wax ester. RSC Adv 7:12283–12291CrossRefGoogle Scholar
- Bunka DHJ, Stockley PG (2006) Aptamers come of age: at last. Nat Rev Microbiol 4:588–596CrossRefGoogle Scholar
- Chen X, L-l Zhang, J-h Sun, Li H, D-f Cui (2014) A facile and simple high-performance polydimethylsiloxane casting based on self-polymerization dopamine. J Micromech Microeng 24:095006CrossRefGoogle Scholar
- Cheng G, Zheng SY (2014) Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion. Sci Rep 4:6947CrossRefGoogle Scholar
- Cheng G, Hao SJ, Yu X, Zheng SY (2015) Nanostructured microfluidic digestion system for rapid high-performance proteolysis. Lab Chip 15:650–654CrossRefGoogle Scholar
- Chien HW, Tsai WB (2012) Fabrication of tunable micropatterned substrates for cell patterning via microcontact printing of polydopamine with poly(ethylene imine)-grafted copolymers. Acta Biomater 8:3678–3686CrossRefGoogle Scholar
- Chien HW, Kuo WH, Wang MJ, Tsai SW, Tsai WB (2012) Tunable micropatterned substrates based on poly(dopamine) deposition via microcontact printing. Langmuir 28:5775–5782CrossRefGoogle Scholar
- Chiou C-H, Shin DJ, Zhang Y, Wang T-H (2013) Topography-assisted electromagnetic platform for blood-to-PCR in a droplet. Biosens Bioelectron 50:91–99CrossRefGoogle Scholar
- Choi K, Ng AHC, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440CrossRefGoogle Scholar
- Chuah YJ, Koh YT, Lim K, Menon NV, Wu Y, Kang Y (2015a) Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci Rep 5:18162CrossRefGoogle Scholar
- Chuah YJ, Kuddannaya S, Lee MH, Zhang Y, Kang Y (2015b) The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. Biomater Sci 3:383–390CrossRefGoogle Scholar
- Della Vecchia NF, Avolio R, Alfè M, Errico ME, Napolitano A, d’Ischia M (2013) Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Adv Funct Mater 23:1331–1340CrossRefGoogle Scholar
- Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246CrossRefGoogle Scholar
- d’Ischia M, Napolitano A, Pezzella A, Meredith P, Sarna T (2009) Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angew Chem 48:3914–3921CrossRefGoogle Scholar
- d’Ischia M, Napolitano A, Ball V, Chen CT, Buehler MJ (2014) Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy. Acc Chem Res 47:3541–3550CrossRefGoogle Scholar
- Dong Z, Zhang F, Wang D, Liu X, Jin J (2015) Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J Solid State Chem 224:88–93CrossRefGoogle Scholar
- Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2013) Perspectives on poly(dopamine). Chem Sci 4:3796–3802CrossRefGoogle Scholar
- Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRefGoogle Scholar
- Eteshola E, Leckband D (2001) Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens Actuators B Chem 72:129–133CrossRefGoogle Scholar
- Fan D, Wu C, Wang K, Gu X, Liu Y, Wang E (2016) A polydopamine nanosphere based highly sensitive and selective aptamer cytosensor with enzyme amplification. Chem Commun 52:406–409CrossRefGoogle Scholar
- Feng H, Zhang Q, Ma H, Zheng B (2015) An ultralow background substrate for protein microarray technology. Analyst 140:5627–5633CrossRefGoogle Scholar
- Fuard D, Tzvetkova-Chevolleau T, Decossas S, Tracqui P, Schiavone P (2008) Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron Eng 85:1289–1293CrossRefGoogle Scholar
- Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5:425–432CrossRefGoogle Scholar
- Gomez FA (2008) Biological applications of microfluidics. Wiley, HobokenGoogle Scholar
- Hillborg H, Ankner JF, Gedde UW, Smith GD, Yasuda HK, Wikström K (2000) Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 41:6851–6863CrossRefGoogle Scholar
- Ho CC, Ding SJ (2013) The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. J Mater Sci 24:2381–2390Google Scholar
- Ho C-C, Ding S-J (2014) Structure, properties and applications of mussel-inspired polydopamine. J Biomed Nanotechnol 10:3063–3084CrossRefGoogle Scholar
- Hong S, Kim KY, Wook HJ, Park SY, Lee KD, Lee DY, Lee H (2011) Attenuation of the in vivo toxicity of biomaterials by polydopamine surface modification. Nanomedicine 6:793–801CrossRefGoogle Scholar
- Hong D, Bae K, Hong SP, Park JH, Choi IS, Cho WK (2014) Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates. Chem Commun 50:11649–11652CrossRefGoogle Scholar
- Jebrail MJ, Bartsch MS, Patel KD (2012) Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine. Lab Chip 12:2452–2463CrossRefGoogle Scholar
- Jiang J, Zhu L, Zhu L, Zhu B, Xu Y (2011) Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 27:14180–14187CrossRefGoogle Scholar
- Jolly P et al (2016) DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosens Bioelectron 79:313–319CrossRefGoogle Scholar
- Jun D-R, Choi YR, Kang RH, Choi S-W (2016) Polydimethylsiloxane fluidic device with polydopamine-coated inner channel for production of uniform droplets. Macromol Mater Eng 301:1044–1048CrossRefGoogle Scholar
- Kang SM et al (2010) One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew Chem 49:9401–9404CrossRefGoogle Scholar
- Kang SM et al (2012) One-step multipurpose surface functionalization by adhesive catecholamine. Adv Funct Mater 22:2949–2955CrossRefGoogle Scholar
- Kim BH et al (2011) Mussel-inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold. Adv Mater 23:5618–5622CrossRefGoogle Scholar
- Kim HW, McCloskey BD, Choi TH, Lee C, Kim MJ, Freeman BD, Park HB (2013a) Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry. ACS Appl Mater Interfaces 5:233–238CrossRefGoogle Scholar
- Kim M, Song KH, Doh J (2013b) PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels. Colloids Surf B 112:134–138CrossRefGoogle Scholar
- Ku SH, Park CB (2010) Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 31:9431–9437CrossRefGoogle Scholar
- Ku SH, Lee JS, Park CB (2010a) Spatial control of cell adhesion and patterning through mussel-inspired surface modification by polydopamine. Langmuir 26:15104–15108CrossRefGoogle Scholar
- Ku SH, Ryu J, Hong SK, Lee H, Park CB (2010b) General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 31:2535–2541CrossRefGoogle Scholar
- Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30CrossRefGoogle Scholar
- Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRefGoogle Scholar
- Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–434CrossRefGoogle Scholar
- Lee M, Ku SH, Ryu J, Park CB (2010) Mussel-inspired functionalization of carbon nanotubes for hydroxyapatite mineralization. J Mater Chem 20:8848CrossRefGoogle Scholar
- Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132CrossRefGoogle Scholar
- Leung JM et al (2015) Surface modification of poly(dimethylsiloxane) with a covalent antithrombin–heparin complex for the prevention of thrombosis: use of polydopamine as bonding agent. J Mater Chem 3:6032–6036CrossRefGoogle Scholar
- Liang RP, Meng XY, Liu CM, Qiu JD (2011) PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis 32:3331–3340CrossRefGoogle Scholar
- Liang Y et al (2017) Metal-polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles. Nanoscale 9:5323–5328CrossRefGoogle Scholar
- Liebscher J et al (2013) Structure of polydopamine: a never-ending story? Langmuir 29:10539–10548CrossRefGoogle Scholar
- Ling Y, Li W, Wang B, Gan W, Zhu C, Brady MA, Wang C (2016) Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness. RSC Adv 6:31037–31045CrossRefGoogle Scholar
- Liu Q, Yu B, Ye W, Zhou F (2011) Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromol Biosci 11:1227–1234CrossRefGoogle Scholar
- Liu C-M, Liang R-P, Wang X-N, Wang J-W, Qiu J-D (2013a) A versatile polydopamine platform for facile preparation of protein stationary phase for chip-based open tubular capillary electrochromatography enantioseparation. J Chromatogr Sci 1294:145–151CrossRefGoogle Scholar
- Liu R, Guo Y, Odusote G, Qu F, Priestley RD (2013b) Core-shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. ACS Appl Mater Interfaces 5:9167–9171CrossRefGoogle Scholar
- Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (2013c) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25:1353–1359CrossRefGoogle Scholar
- Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115CrossRefGoogle Scholar
- Loget G, Wood JB, Cho K, Halpern AR, Corn RM (2013) Electrodeposition of polydopamine thin films for DNA patterning and microarrays. Anal Chem 85:9991–9995CrossRefGoogle Scholar
- Lu YW, Lin PT, Pai CS (2007) Polydimethylsiloxane (PDMS) bonding strength characterization by a line force model in blister tests. Paper presented at the transducers 2007–2007 international solid-state sensors, actuators and microsystems conference, 10–14 June 2007Google Scholar
- Lynge ME, van der Westen R, Postma A, Stadler B (2011) Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale 3:4916–4928CrossRefGoogle Scholar
- Lynge ME, Schattling P, Stadler B (2015) Recent developments in poly(dopamine)-based coatings for biomedical applications. Nanomedicine 10:2725–2742CrossRefGoogle Scholar
- Madhurakkat Perikamana SK, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, Shin H (2015) Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromol 16:2541–2555CrossRefGoogle Scholar
- Mata A, Fleischman AJ, Roy S (2005) Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 7:281–293CrossRefGoogle Scholar
- McCloskey BD et al (2010) Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer 51:3472–3485CrossRefGoogle Scholar
- Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80:1614–1619CrossRefGoogle Scholar
- Ng AHC, Choi K, Luoma RP, Robinson JM, Wheeler AR (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84:8805–8812CrossRefGoogle Scholar
- Ng AHC, Chamberlain MD, Situ H, Lee V, Wheeler AR (2015) Digital microfluidic immunocytochemistry in single cells. Nat Commun 6:7513CrossRefGoogle Scholar
- Pipper J, Inoue M, Ng LFP, Neuzil P, Zhang Y, Novak L (2007) Catching bird flu in a droplet. Nat Med 13:1259–1263CrossRefGoogle Scholar
- Pipper J, Zhang Y, Neuzil P, Hsieh TM (2008) Clockwork PCR including sample preparation. Angew Chem 47:3900–3904CrossRefGoogle Scholar
- Postma A, Yan Y, Wang Y, Zelikin AN, Tjipto E, Caruso F (2009) Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chem Mater 21:3042–3044CrossRefGoogle Scholar
- Qiang W, Hu H, Sun L, Li H, Xu D (2015) Aptamer/polydopamine nanospheres nanocomplex for in situ molecular sensing in living cells. Anal Chem 87:12190–12196CrossRefGoogle Scholar
- Ren K, Dai W, Zhou J, Su J, Wu H (2011) Whole-teflon microfluidic chips. Proc Natl Acad Sci 108:8162–8166CrossRefGoogle Scholar
- Resnick PR (1989) The preparation and properties of a new family of amorphous fluoropolymers: teflon® AF. J Fluor Chem 45:100CrossRefGoogle Scholar
- Rivera JG, Messersmith PB (2012) Polydopamine-assisted immobilization of trypsin onto monolithic structures for protein digestion. J Sep Sci 35:1514–1520CrossRefGoogle Scholar
- Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189CrossRefGoogle Scholar
- Salazar P, Martín M, Gonzalez-Mora JL (2016) Polydopamine-modified surfaces in biosensor applications. In: Méndez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications and educational aspects. Formatex Research Center, pp 385–396Google Scholar
- Shah GJ, Ohta AT, Chiou EPY, Wu MC (2009) EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9:1732–1739CrossRefGoogle Scholar
- Shamsi MH, Choi K, Ng AHC, Wheeler AR (2014) A digital microfluidic electrochemical immunoassay. Lab Chip 14:547–554CrossRefGoogle Scholar
- Shen B, Xiong B, Wu H (2015) Convenient surface functionalization of whole-teflon chips with polydopamine coating. Biomicrofluidics 9:044111CrossRefGoogle Scholar
- Shi X, Ostrovidov S, Shu Y, Liang X, Nakajima K, Wu H, Khademhosseini A (2014) Microfluidic generation of polydopamine gradients on hydrophobic surfaces. Langmuir 30:832–838CrossRefGoogle Scholar
- Shin SR et al (2016) Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem 88:10019–10027CrossRefGoogle Scholar
- Sileika TS, Kim HD, Maniak P, Messersmith PB (2011) Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces 3:4602–4610CrossRefGoogle Scholar
- Sun K et al (2012) Mussel-inspired anchoring for patterning cells using polydopamine. Langmuir 28:2131–2136CrossRefGoogle Scholar
- Tsai W-B, Chen W-T, Chien H-W, Kuo W-H, Wang M-J (2011) Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering. Acta Biomater 7:4187–4194CrossRefGoogle Scholar
- Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
- Wang Y et al (2015a) An ultra hydrophilic dendrimer-modified magnetic graphene with a polydopamine coating for the selective enrichment of glycopeptides. J Mater Chem B 3:8711–8716CrossRefGoogle Scholar
- Wang Z et al (2015b) Bioadhesive microporous architectures by self-assembling polydopamine microcapsules for biomedical applications. Chem Mater 27:848–856CrossRefGoogle Scholar
- Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34:747–754CrossRefGoogle Scholar
- Weinhold M, Soubatch S, Temirov R, Rohlfing M, Jastorff B, Tautz FS, Doose C (2006) Structure and bonding of the multifunctional amino acid l-DOPA on Au(110). J Phys Chem Ref Data 110:23756–23769CrossRefGoogle Scholar
- Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
- Wöllenstein J, Plaza JA, Cané C, Min Y, Böttner H, Tuller HL (2003) A novel single chip thin film metal oxide array. Sens Actuators B Chem 93:350–355CrossRefGoogle Scholar
- Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447CrossRefGoogle Scholar
- Wood JB, Szyndler MW, Halpern AR, Cho K, Corn RM (2013) Fabrication of DNA microarrays on polydopamine-modified gold thin films for SPR imaging measurements. Langmuir 29:10868–10873CrossRefGoogle Scholar
- Yan Y, Zheng Z, Deng C, Li Y, Zhang X, Yang P (2013) Hydrophilic polydopamine-coated graphene for metal ion immobilization as a novel immobilized metal ion affinity chromatography platform for phosphoproteome analysis. Anal Chem 85:8483–8487CrossRefGoogle Scholar
- Yang HC, Wu QY, Wan LS, Xu ZK (2013) Polydopamine gradients by oxygen diffusion controlled autoxidation. Chem Commun 49:10522–10524CrossRefGoogle Scholar
- Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258CrossRefGoogle Scholar
- You I et al (2012) Polydopamine microfluidic system toward a two-dimensional, gravity-driven mixing device. Angew Chem 51:6126–6130CrossRefGoogle Scholar
- You I, Lee TG, Nam YS, Lee H (2014) Fabrication of a micro-omnifluidic device by omniphilic/omniphobic patterning on nanostructured surfaces. ACS Nano 8:9016–9024CrossRefGoogle Scholar
- Yu B, Liu J, Liu S, Zhou F (2010) Pdop layer exhibiting zwitterionicity: a simple electrochemical interface for governing ion permeability. Chem Commun 46:5900–5902CrossRefGoogle Scholar
- Zhang Y, Nguyen N-T (2017) Magnetic digital microfluidics: a review. Lab Chip 17:994–1008CrossRefGoogle Scholar
- Zhang Y, Wang TH (2013) Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays. Adv Mater 25:2903–2908CrossRefGoogle Scholar
- Zhang Y, Park S, Liu K, Tsuan J, Yang S, Wang T-H (2011) A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip 11:398–406CrossRefGoogle Scholar
- Zhang W, Yang FK, Han Y, Gaikwad R, Leonenko Z, Zhao B (2013a) Surface and tribological behaviors of the bioinspired polydopamine thin films under dry and wet conditions. Biomacromol 14:394–405CrossRefGoogle Scholar
- Zhang Y, Shin DJ, Wang T-H (2013b) Serial dilution via surface energy trap-assisted magnetic droplet manipulation. Lab Chip 13:4827–4831CrossRefGoogle Scholar
- Zhang Y, Geng X, Ai J, Gao Q, Qi H, Zhang C (2015) Signal amplification detection of DNA using a sensor fabricated by one-step covalent immobilization of amino-terminated probe DNA onto the polydopamine-modified screen-printed carbon electrode. Sens Actuators B Chem 221:1535–1541CrossRefGoogle Scholar
- Zhang P, He M, Zeng Y (2016) Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 16:3033–3042CrossRefGoogle Scholar
- Zhao Y, Liu X, Li J, Qiang W, Sun L, Li H, Xu D (2016) Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin. Talanta 150:81–87CrossRefGoogle Scholar
- Zhou P, Deng Y, Lyu B, Zhang R, Zhang H, Ma H, Lyu Y, Wei S (2014) Rapidly-deposited polydopamine coating via high temperature and vigorous stirring: formation, characterization and biofunctional evaluation. PLoS ONE 9(11):e113087CrossRefGoogle Scholar
- Zou Z, Jang A, MacKnight E, Wu P-M, Do J, Bishop PL, Ahn CH (2008) Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement. Sens Actuators B Chem 134:18–24CrossRefGoogle Scholar