Skip to main content
Log in

Long-wave interface instabilities of a two-layer system under periodic excitation for thin films

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The stability of a system of two thin liquid films under AC electroosmotic flow is studied using linear stability analysis for long-wave disturbances. The system is bounded by two rigid plates which act as substrate. Boltzmann charge distribution is assumed for the two electrolyte solutions. The effect of van der Waals interactions in these thin films is incorporated in the momentum equations through the disjoining pressure. The base-state velocity profile from the present study is compared with simple experiments and other analytical results. Parametric study involving various electrochemical factors is performed and the stability behaviour is analysed using growth rate, marginal stability, critical amplitude and maximum growth rate in phase space. An increase in the disjoining pressure is found to decrease stability of the system. On the other hand, increasing the frequency of the applied electric field is found to stabilize the system. However, the dependence of the stability on parameters such as viscosity ratio, permittivity ratio, interface zeta potential and interface charge depends not only on the value of individual parameters but also on the rest of the parameters. Design of experiments (DOE) is used to observe the general trend of stability with different parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Baygents JC, Saville DA (1991) Electrophoresis of drops and bubbles. J Chem Soc Faraday Trans 87(12):1883–1898

    Article  Google Scholar 

  • Brask A, Goranovic G, Bruus H (2003) Electroosmotic pumping of nonconducting liquids by viscous drag from a secondary conducting liquid. Nanotech 1:190–193

    Google Scholar 

  • Chang H-C, Yossifon G, Demekhin E (2012) Nanoscale electrokinetics and microvortices: how microhydrodynamics affects nanofluidic ion flux. Annu Rev Fluid Mech 44:401–426

    Article  MathSciNet  MATH  Google Scholar 

  • Choi W, Sharma A, Qian S, Lim G, Joo SW (2011) On steady two-fluid electroosmotic flow with full interfacial electrostatics. J Coll Interface Sci 357:521–526

    Article  Google Scholar 

  • Delgado A, González-Caballero F, Hunter R, Koopal L, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. J Coll Interface Sci 309:194–224

    Article  Google Scholar 

  • Dutta P, Beskok A (2001) Analytical solution of time periodic electroosmotic flows: analogies to stokes’ second problem. Anal Chem 73:5097–5102

    Article  Google Scholar 

  • Gambhire P, Thaokar RM (2010) Electrohydrodynamic instabilities at interfaces subjected to alternating electric field. Phys Fluids 22(6):064103

    Article  MATH  Google Scholar 

  • Ganchenko GS, Demekhin EA, Mayur M, Amiroudine S (2015) Electrokinetic instability of liquid micro- and nanofilms with a mobile charge. Phys of Fluids 27(6):062002

    Article  Google Scholar 

  • Gao Y, Wong TN, Yang C, Ooi KT (2005) Two-fluid electroosmotic flow in microchannels. J Coll Interface Sci 284:306–314

    Article  MATH  Google Scholar 

  • Kamachi M, Honji H (1982) The instability of viscous two-layer oscillatory flow. J Oceanogr Soc Jpn 38:346–356

    Article  Google Scholar 

  • Khair AS, Squires TM (2008) Fundamental aspects of concentration polarization arising from nonuniform electrokinetic transport. Phys Fluids 20(8):087102

    Article  MATH  Google Scholar 

  • Lim J-M, Karnik R (2014) Optimizing the discovery and clinical translation of nanoparticles: could microfluidics hold the key? Nanomedicine 9(8):1113–1116

    Article  Google Scholar 

  • Mairhofer J, Roppert K, Ertl P (2009) Microfluidic systems for pathogen sensing: a review. Sensors 9(6):4804–4823

    Article  Google Scholar 

  • Mayur M (2013) Ph.D. Dissertation, University of Bordeaux

  • Mayur M, Amiroudine S, Lasseux D (2012) Free-surface instability in electro-osmotic flows of ultrathin liquid films. Phys Rev E 85:046301

    Article  Google Scholar 

  • Mayur M, Amiroudine S, Lasseux D, Chakraborty S (2014) Effect of interfacial Maxwell stress on time periodic electro-osmotic flow in a thin liquid film with a flat interface. Electrophoresis 35:670–680

    Article  Google Scholar 

  • Navarkar A, Amiroudine S, Mayur M, Demekhin EA (2015) Long-wave interface instabilities of a two-liquid DC electroosmotic system for thin films. Microfluid Nanofluid 19(4):813–827

    Article  Google Scholar 

  • Navarkar A, Amiroudine S, Demekhin EA (2016) On two-liquid AC electroosmotic system for thin films. Electrophoresis

  • Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73:5822–5832

    Article  Google Scholar 

  • Park HM, Lee JS, Kim TW (2007) Comparison of the Nernst-Planck model and the Poisson-Boltzmann model. J Coll Interface Sci 315:731–739

    Article  Google Scholar 

  • Ramos A, Morgan H, Green NG, Castellanos A (1999) AC electric-field-induced fluid flow in microelectrodes. J Coll Interface Sci 217(2):420–422

    Article  Google Scholar 

  • Ramos A, Morgan H, Green NG, González A, Castellanos A (2005) Pumping of liquids with traveling-wave electroosmosis. J Appl Phys 97(8):084906

    Article  Google Scholar 

  • Samec Z, Marecek V, Homolka D (1985) The double layer at the interface between two immiscible electrolyte solutions. J Electroanal Chem 187:31–51

    Article  Google Scholar 

  • Saville DA (1977) Electrokinetic effects with small particles. Annu Rev Fluid Mech 9:321–337

    Article  MATH  Google Scholar 

  • Schnitzer O, Yariv E (2012a) Induced-charge electro-osmosis beyond weak fields. Phys Rev E 86(6):061506

    Article  Google Scholar 

  • Schnitzer O, Yariv E (2012b) Strong-field electrophoresis. J Fluid Mech 701:333–351

    Article  MathSciNet  MATH  Google Scholar 

  • Schnitzer O, Yariv E (2015) The Taylor-Melcher leaky dielectric model as a macroscale electrokinetic description. J Fluid Mech 773:1–33

    Article  MathSciNet  MATH  Google Scholar 

  • Sen Y-H, Jain T, Aguilar CA, Karnik R (2012) Enhanced discrimination of DNA molecules in nanofluidic channels through multiple measurements. Lab Chip 12:1094–1101

    Article  Google Scholar 

  • Senda M, Kakiuchi T, Osakai T (1991) Electrochemistry at the interface between two immiscible electrolyte solutions. Electrochim Acta 36:253–262

    Article  Google Scholar 

  • Shankar V, Sharma A (2004) Instability of the interface between thin fluid films subjected to electric fields. J Coll Interface Sci 274:294–308

    Article  Google Scholar 

  • Stone H, Stroock A, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  MATH  Google Scholar 

  • Tang G, Yang C, Chai J, Gong H (2004) Joule heating effect on electroosmotic flow and mass species transport in a microcapillary. Int J Heat Mass Transf 47:215–227

    Article  MATH  Google Scholar 

  • Thaokar RM, Kumaran V (2005) Electrohydrodynamic instability of the interface between two fluids confined in a channel. Phys Fluids 17:1–20

    Article  MATH  Google Scholar 

  • Toner M, Irimia D (2005) Blood on a chip. Annu Rev Biomed Eng 7:77–103

    Article  Google Scholar 

  • Wang X, Cheng C, Wang S, Liu S (2009) Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid 6(2):145–162

    Article  MathSciNet  Google Scholar 

  • Yih C (1963) Stability of liquid flow down an inclined plane. Phys Fluids 6:321–334

    Article  MATH  Google Scholar 

Download references

Acknowledgments

SA and EAD thank also the financial support from the French State in the frame of the “Investments for the future” Programme IdEx Bordeaux, reference ANR-10-IDEX-03-02. EAD also was supported, in part, by the Russian Foundation for Basic Research (Projects No 15-08-02483a and 15-58-45123_ind).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amiroudine.

Appendices

Appendix 1

The electric potential \( \varPhi_{{{\text{sc}},i}} \) (i = 1, 2) due the space charge distribution can be written as follows:

$$ 0 < Y < 1: \varPhi_{{{\text{sc}},1}} = A_{1} {\text{e}}^{{\frac{Y}{{{\text{De}}_{1} }}}} + B_{1} {\text{e}}^{{ - \frac{Y}{{{\text{De}}_{1} }}}} $$
(57)
$$ 1 < Y < H_{2} : \varPhi_{{{\text{sc}},2}} = A_{2} {\text{e}}^{{\frac{Y}{{{\text{De}}_{2} }}}} + B_{2} {\text{e}}^{{ - \frac{Y}{{{\text{De}}_{2} }}}} $$
(58)
$$ A_{1} = \frac{{\left( {e^{{\frac{2}{{De_{2} }}}} - e^{{\frac{{2H_{2} }}{{De_{2} }}}} } \right)De_{2} \left( {1 + e^{{\frac{1}{{De_{1} }}}} De_{1} \bar{Q}_{I} } \right) + De_{1} \varepsilon_{R} \left( {e^{{\frac{2}{{De_{2} }}}} + e^{{\frac{{2H_{2} }}{{De_{2} }}}} - 2e^{{\frac{1}{{De_{1} }} + \frac{{1 + H_{2} }}{{De_{2} }}}} \left( {\text{Cosh} \left[ {\frac{{1 - H_{2} }}{{De_{2} }}} \right]\bar{\zeta }_{I} + \bar{\zeta }_{u} } \right)} \right)}}{{\left( {1 + e^{{\frac{2}{{De_{1} }}}} } \right)\left( {e^{{\frac{2}{{De_{2} }}}} - e^{{\frac{{2H_{2} }}{{De_{2} }}}} } \right)De_{2} - \left( { - 1 + e^{{\frac{2}{{De_{1} }}}} } \right)\left( {e^{{\frac{2}{{De_{2} }}}} + e^{{\frac{{2H_{2} }}{{De_{2} }}}} } \right)De_{1} \varepsilon_{R} }} $$
$$ B_{1} = \frac{{e^{{\frac{1}{{De_{1} }}}} \left( {\left( {e^{{\frac{2}{{De_{2} }}}} - e^{{\frac{{2H_{2} }}{{De_{2} }}}} } \right)De_{2} \left( {e^{{\frac{1}{{De_{1} }}}} - De_{1} \bar{Q}_{I} } \right) - De_{1} \varepsilon_{R} \left( {e^{{\frac{1}{{De_{1} }}}} \left( {e^{{\frac{2}{{De_{2} }}}} + e^{{\frac{{2H_{2} }}{{De_{2} }}}} } \right) - 2e^{{\frac{{1 + H_{2} }}{{De_{2} }}}} \left( {\text{Cosh} \left[ {\frac{{1 - H_{2} }}{{De_{2} }}} \right]\bar{\zeta }_{I} + \bar{\zeta }_{u} } \right)} \right)} \right)}}{{\left( {1 + e^{{\frac{2}{{De_{1} }}}} } \right)\left( {e^{{\frac{2}{{De_{2} }}}} - e^{{\frac{{2H_{2} }}{{De_{2} }}}} } \right)De_{2} - \left( { - 1 + e^{{\frac{2}{{De_{1} }}}} } \right)\left( {e^{{\frac{2}{{De_{2} }}}} + e^{{\frac{{2H_{2} }}{{De_{2} }}}} } \right)De_{1} \varepsilon_{R} }} $$
$$ A_{2} = \frac{{2{\text{e}}^{{\left( {\frac{1}{{De_{1} }} + \frac{1}{{De_{2} }}} \right)}} De_{2} \left( {1 + {\text{Sinh}}\left[ {\frac{1}{{De_{1} }}} \right]De_{1} \bar{Q}_{I} - {\text{Cosh}}\left[ {\frac{1}{{De_{1} }}} \right]\bar{\zeta }_{I} } \right) - {\text{e}}^{{\frac{{H_{2} }}{{De_{2} }}}} \left( {De_{2} - De_{1} \varepsilon_{R} + {\text{e}}^{{\frac{2}{{De_{1} }}}} \left( {De_{2} + De_{1} \varepsilon_{R} } \right)} \right)\bar{\zeta }_{u} }}{{\left( {1 + {\text{e}}^{{\frac{2}{{De_{1} }}}} } \right)\left( {{\text{e}}^{{\frac{2}{{De_{2} }}}} - {\text{e}}^{{\frac{{2H_{2} }}{{De_{2} }}}} } \right)De_{2} - \left( { - 1 + {\text{e}}^{{\frac{2}{{De_{1} }}}} } \right)\left( {{\text{e}}^{{\frac{2}{{De_{2} }}}} + {\text{e}}^{{\frac{{2H_{2} }}{{De_{2} }}}} } \right)De_{1} \varepsilon_{R} }} $$
$$ B_{2} = \frac{{e^{{\frac{{1 + H_{2} }}{{De_{2} }}}} \left( {2e^{{\frac{1}{{De_{1} }} + \frac{{H_{2} }}{{De_{2} }}}} De_{2} \left( {1 + \text{Sinh} \left[ {\frac{1}{{De_{1} }}} \right]De_{1} \bar{Q}_{I} - \text{Cosh} \left[ {\frac{1}{{De_{1} }}} \right]\bar{\zeta }_{I} } \right) - e^{{\frac{1}{{De_{2} }}}} \left( {De_{2} + De_{1} \varepsilon_{R} + e^{{\frac{2}{{De_{1} }}}} \left( {De_{2} - De_{1} \varepsilon_{R} } \right)} \right)\bar{\zeta }_{u} } \right)}}{{ - \left( {1 + e^{{\frac{2}{{De_{1} }}}} } \right)\left( {e^{{\frac{2}{{De_{2} }}}} - e^{{\frac{{2H_{2} }}{{De_{2} }}}} } \right)De_{2} + \left( { - 1 + e^{{\frac{2}{{De_{1} }}}} } \right)\left( {e^{{\frac{2}{{De_{2} }}}} + e^{{\frac{{2H_{2} }}{{De_{2} }}}} } \right)De_{1} \varepsilon_{R} }} $$

Appendix 2

The set of equations with \( \alpha^{0} \) order is as follows:

$$ \frac{{\partial^{4} \hat{\varPsi }_{1,0} }}{{\partial Y^{4} }} - {{Wo}}_{1}^{2} \frac{{\partial^{3} \hat{\varPsi }_{1,0} }}{{\partial \theta \partial Y^{2} }} = \sigma_{0} {{Wo}}_{1}^{2} \frac{{\partial^{2} \hat{\varPsi }_{1,0} }}{{\partial Y^{2} }} $$
(59)
$$ \frac{{\partial^{4} \hat{\varPsi }_{2,0} }}{{\partial Y^{4} }} - {{Wo}}_{2}^{2} \frac{{\partial^{3} \hat{\varPsi }_{2,0} }}{{\partial \theta \partial Y^{2} }} = \sigma_{0} {{Wo}}_{2}^{2} \frac{{\partial^{2} \hat{\varPsi }_{2,0} }}{{\partial Y^{2} }} $$
(60)

with the corresponding boundary conditions,

No slip and no penetration:

$$ \frac{{\partial \hat{\varPsi }_{1,0} }}{\partial Y}\left( {0,\theta } \right) = 0, \quad \hat{\varPsi }_{1,0} \left( {0,\theta } \right) = 0, \quad \frac{{\partial \hat{\varPsi }_{2,0} }}{\partial Y}\left( {H_{2} ,\theta } \right) = 0, \hat{\varPsi }_{2,0} \left( {H_{2} ,\theta } \right) = 0 $$
(61)

Shear stress balance:

$$ \begin{aligned} &\frac{{\partial^{2} \hat{\varPsi }_{1,0} \left( {1,\theta } \right)}}{{\partial Y^{2} }} + \hat{H}_{0} \left( \theta \right)\frac{{\partial^{2} U_{1,b} \left( {1,\theta } \right)}}{{\partial Y^{2} }} + \gamma_{R,1} E_{R} \hat{H}_{0} \left( \theta \right)\frac{{\partial \varPhi_{1} }}{\partial X}\frac{{\partial^{2} \varPhi_{1} \left( 1 \right)}}{{\partial Y^{2} }} \hfill \\ &\quad = \mu_{R} \left( {\frac{{\partial^{2} \hat{\varPsi }_{2,0} }}{{\partial Y^{2} }}\left( {1,\theta } \right) + \hat{H}_{0} \left( \theta \right)\frac{{\partial^{2} U_{2,b} \left( 1 \right)}}{{\partial Y^{2} }} + \gamma_{R,2} E_{R} \hat{H}_{0} \left( \theta \right)\frac{{\partial \varPhi_{2} }}{\partial X}\frac{{\partial^{2} \varPhi_{2} \left( 1 \right)}}{{\partial Y^{2} }}} \right) \hfill \\ \end{aligned} $$
(62)

Normal stress balance:

$$ \begin{aligned} &\frac{{\partial^{3} \hat{\varPsi }_{1,0} \left( {1,\theta } \right)}}{{\partial Y^{3} }} - Wo_{1}^{2} \frac{{\partial^{2} \hat{\varPsi }_{1,0} \left( {1,\theta } \right)}}{\partial \theta \partial Y} - \sigma_{0} Wo_{1}^{2} \frac{{\partial \hat{\varPsi }_{1,0} \left( {1,\theta } \right)}}{\partial Y} \hfill \\ & \quad = \mu_{R} \left( {\frac{{\partial^{3} \hat{\varPsi }_{2,0} \left( {1,\theta } \right)}}{{\partial Y^{3} }} - Wo_{2}^{2} \frac{{\partial^{2} \hat{\varPsi }_{2,0} \left( {1,\theta } \right)}}{\partial \theta \partial Y} - \sigma_{0} Wo_{2}^{2} \frac{{\partial \hat{\varPsi }_{2,0} \left( {1,\theta } \right)}}{\partial Y}} \right) \hfill \\ \end{aligned} $$
(63)

Continuity of normal and tangential velocity:

$$ \hat{\varPsi }_{1,0} \left( {H_{1} ,\theta } \right) = \hat{\varPsi }_{2,0} \left( {H_{1} ,\theta } \right) $$
(64)
$$ \hat{H}_{0} \left( \theta \right)\left( {\frac{{\partial U_{1,b} \left( {1,\theta } \right)}}{\partial Y} - \frac{{\partial U_{2,b} \left( {1,\theta } \right)}}{\partial Y}} \right) + \left( {\frac{{\partial \hat{\varPsi }_{1,0} \left( {1,\theta } \right)}}{\partial Y} - \frac{{\partial \hat{\varPsi }_{2,0} \left( {1,\theta } \right)}}{\partial Y}} \right) = 0 $$
(65)

Kinematic conditions:

$$ \frac{{{{Wo}}_{1}^{2} }}{{{{Re}}_{1} }}\frac{{\partial \hat{H}_{0} \left( \theta \right)}}{\partial \theta } + \sigma_{0} \frac{{{{Wo}}_{1}^{2} }}{{{{Re}}_{1} }}\hat{H}_{0} \left( \theta \right) = 0 $$
(66)

The set of equations with \( \alpha^{1} \) order with \( \sigma_{0} = 0 \) and \( \hat{H}_{0} = 1 \) is as follows:

$$ \frac{{\partial^{4} \hat{\varPsi }_{1,1} }}{{\partial Y^{4} }} - {{Wo}}_{1}^{2} \frac{{\partial^{3} \hat{\varPsi }_{1,1} }}{{\partial \theta \partial Y^{2} }} - {{iRe}}_{1} U_{1,b} \frac{{\partial^{2} \hat{\varPsi }_{1,0} }}{{\partial Y^{2} }} + {{iRe}}_{1} \frac{{\partial^{2} U_{1,b} }}{{\partial Y^{2} }}\hat{\varPsi }_{1,0} = \sigma_{1} {{Wo}}_{1}^{2} \frac{{\partial^{2} \hat{\varPsi }_{1,0} }}{{\partial Y^{2} }} $$
(67)
$$ \frac{{\partial^{4} \hat{\varPsi }_{2,1} }}{{\partial Y^{4} }} - {{Wo}}_{2}^{2} \frac{{\partial^{3} \hat{\varPsi }_{2,1} }}{{\partial \theta \partial Y^{2} }} - {{iRe}}_{2} U_{2,b} \frac{{\partial^{2} \hat{\varPsi }_{2,0} }}{{\partial Y^{2} }} + {{iRe}}_{2} \frac{{\partial^{2} U_{2,b} }}{{\partial Y^{2} }}\hat{\varPsi }_{2,0} = \sigma_{1} {{Wo}}_{2}^{2} \frac{{\partial^{2} \hat{\varPsi }_{2,0} }}{{\partial Y^{2} }} $$
(68)

with the following boundary conditions:

No slip and no penetration:

$$ \frac{{\partial \hat{\varPsi }_{1,1} }}{\partial Y}\left( {0,\theta } \right) = 0, \hat{\varPsi }_{1,1} \left( {0,\theta } \right) = 0, \frac{{\partial \hat{\varPsi }_{2,1} }}{\partial Y}\left( {H_{2} ,\theta } \right) = 0, \hat{\varPsi }_{2,1} \left( {H_{2} ,\theta } \right) = 0 $$
(69)

Shear stress balance:

$$ \begin{aligned} &\frac{{\partial^{2} \hat{\varPsi }_{1,1} \left( {1,\theta } \right)}}{{\partial Y^{2} }} + \hat{H}_{1} \left( \theta \right)\frac{{\partial^{2} U_{1,b} \left( {1,\theta } \right)}}{{\partial Y^{2} }} + \gamma_{R,1} E_{R} \hat{H}_{1} \left( \theta \right)\frac{{\partial \varPhi_{1} }}{\partial X}\frac{{\partial^{2} \varPhi_{1} \left( 1 \right)}}{{\partial Y^{2} }} \hfill \\ & \qquad - {\text{i}}\gamma_{R,1} E_{R} \hat{H}_{0} \left( \theta \right)\left( {\left( {\frac{{\partial \varPhi_{1} }}{\partial X}} \right)^{2} - \left( {\frac{{\partial \varPhi_{1} \left( 1 \right)}}{\partial Y}} \right)^{2} } \right) \hfill \\ & \quad = \mu_{R} \left( {\frac{{\partial^{2} \hat{\varPsi }_{2,1} \left( {1,\theta } \right)}}{{\partial Y^{2} }} + \hat{H}_{1} \frac{{\partial^{2} U_{2,b} \left( {1,\theta } \right)}}{{\partial Y^{2} }} + \gamma_{R,2} E_{R} \hat{H}_{1} \left( \theta \right)\frac{{\partial \varPhi_{2} }}{\partial X}\frac{{\partial^{2} \varPhi_{2} \left( 1 \right)}}{{\partial Y^{2} }} - {\text{i}}\gamma_{R,2} E_{R} \hat{H}_{0} \left( \theta \right)\left( {\left( {\frac{{\partial \varPhi_{2} }}{\partial X}} \right)^{2} - \left( {\frac{{\partial \varPhi_{2} \left( 1 \right)}}{\partial Y}} \right)^{2} } \right)} \right) \hfill \\ \end{aligned} $$
(70)

Normal stress balance:

$$ \begin{aligned} & \frac{{\partial^{3} \hat{\varPsi }_{1,1} \left( {1,\theta } \right)}}{{\partial Y^{3} }} - Wo_{1}^{2} \left( {\frac{{\partial^{2} \hat{\varPsi }_{1,1} \left( {1,\theta } \right)}}{\partial \theta \partial Y} + \sigma_{1} \frac{{\partial \hat{\varPsi }_{1,0} \left( {1,\theta } \right)}}{\partial Y}} \right) \hfill \\ &\qquad- iRe_{1} \left( {U_{1,b} \left( {1,\theta } \right)\frac{{\partial \hat{\varPsi }_{1,0} \left( {1,\theta } \right)}}{\partial Y} - \hat{\varPsi }_{1,0} \left( {1,\theta } \right)\frac{{\partial U_{1,b} \left( {1,\theta } \right)}}{\partial Y}} \right) \hfill \\ &\quad = i\left( {\frac{{\alpha^{2} }}{Ca} - \frac{{3A_{1} }}{{H_{1} }} - \mu_{R} \frac{{3A_{2} }}{{\left( {H_{2} - H_{1} } \right)}}} \right) \hfill \\ &\mu_{R} \left\{ {\frac{{\partial^{3} \hat{\varPsi }_{2,1} \left( {1,\theta } \right)}}{{\partial Y^{3} }} - Wo_{2}^{2} \left( {\frac{{\partial^{2} \hat{\varPsi }_{2,1} \left( {1,\theta } \right)}}{\partial \theta \partial Y} + \sigma_{1} \frac{{\partial \hat{\varPsi }_{2,0} \left( {1,\theta } \right)}}{\partial Y}} \right)} \right. \hfill \\ &\qquad -\left. { \,iRe_{2} \left( {U_{2,b} \left( {1,\theta } \right)\frac{{\partial \hat{\varPsi }_{2,0} \left( {1,\theta } \right)}}{\partial Y} - \hat{\varPsi }_{2,0} \left( {H_{1} ,\theta } \right)\frac{{\partial U_{2,b} \left( {1,\theta } \right)}}{\partial Y}} \right)} \right\} \hfill \\ \end{aligned} $$
(71)

Continuity of normal and tangential velocity:

$$ \hat{\varPsi }_{1,1} \left( {1,\theta } \right) = \hat{\varPsi }_{2,1} \left( {1,\theta } \right) $$
(72)

Kinematic conditions:

$$ \frac{{{{Wo}}_{1}^{2} }}{{{{Re}}_{1} }}\frac{{\partial \hat{H}_{1} \left( \theta \right)}}{\partial \theta } + \sigma_{1} \frac{{{{Wo}}_{1}^{2} }}{{{{Re}}_{1} }} + {\text{i}}U_{1,b} \left( {1,\theta } \right) = - {\text{i}}\hat{\varPsi }_{1,0} \left( {1,\theta } \right) $$
(73)

The kinematic condition in the first and second set of equations entails \( \sigma_{0} = 0 \) and \( \sigma_{1} = 0 \), respectively. Without loss of generality, \( \hat{H}_{0} \left( \theta \right) = 1 \) (Kamachi and Honji 1982). The periodic function \( \hat{\varPsi }_{i,0} \) can be found by representing it as \( {\text{Im}}\left( {G_{i,0} \left( Y \right){\text{e}}^{i\theta } } \right) \).

Kinematic condition corresponding to \( \alpha^{2} \) order with \( \sigma_{0} = 0 \) and \( \hat{H}_{0} = 1 \):

$$ {{Wo}}_{1}^{2} \frac{{\partial \hat{H}_{2} \left( \theta \right)}}{\partial \theta } + \sigma_{2} {{Wo}}_{1}^{2} + {{iRe}}_{1} \left( {\hat{H}_{1} U_{1,b} \left( {1,\theta } \right) + \hat{\varPsi }_{1,1} \left( {1, \theta } \right)} \right) = 0 $$
(74)

Since \( \hat{H}_{2} \left( \theta \right) \) must be periodic in time, \( \sigma_{2} \) can be derived using only the steady part of \( \hat{\varPsi }_{1,1} \). A set of time-independent equations is hence obtained from the second set (equations corresponding to \( \alpha^{1} \)). Since the two sets of equations are complicated owing to the number of parameters involved, they are solved by substituting the numerical values of the parameters with Mathematica’s differential equation solver package.

Considering the steady part of the above equation, expression for growth rate:

$$ \sigma_{2} = - \frac{{{{iRe}}_{1} }}{{{{Wo}}_{1}^{2} }}\left( { - H_{11} \frac{{\bar{F}_{1} \left( 1 \right)}}{{2{\text{i}}}} + H_{12} \frac{{F_{1} \left( 1 \right)}}{{2{\text{i}}}} + \hat{\varPsi }_{1,1s} \left( 1 \right)} \right) $$
(75)

\( \hat{\varPsi }_{1,1s} \) is the steady part of \( \hat{\varPsi }_{1,1} \). \( H_{11} \) and \( H_{12} \) are defined as follows:

$$ H_{11} = \frac{{{{iRe}}_{1} }}{{2{{Wo}}_{1}^{2} }}\left( {F_{1} \left( {H_{1} } \right) + G_{1,0} \left( {H_{1} } \right)} \right);H_{12} = \frac{{{{iRe}}_{1} }}{{2{{Wo}}_{1}^{2} }}\left( {\left( {\overline{{F_{1} }} \left( {H_{1} } \right) + \bar{G}_{1,0} \left( {H_{1} } \right)} \right)} \right) $$

G 1,0 (Y)is defined for \( \hat{\varPsi }_{i,0} \left( {Y,\theta } \right) \) as follows:

$$ \hat{\varPsi }_{1,0} \left( {Y,\theta } \right) = {\text{Im}}\left( {G_{1,0} \left( Y \right){\text{e}}^{{{\text{i}}\theta }} } \right) $$

And \( F_{1} \left( Y \right) \) is same as defined for the base state:

$$ U_{1,b} \left( {Y,\theta } \right) = {\text{Im}}\left( {F_{1} \left( Y \right){\text{e}}^{i\theta } } \right) $$

and \( \bar{F}_{1} \left( Y \right) \) and \( \bar{G}_{1,0} \left( Y \right) \) are the complex conjugates of \( F_{1} \left( Y \right) \) and \( G_{1,0} \left( Y \right) \), respectively.

Appendix 3

Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarkar, A., Amiroudine, S., Demekhin, E.A. et al. Long-wave interface instabilities of a two-layer system under periodic excitation for thin films. Microfluid Nanofluid 20, 149 (2016). https://doi.org/10.1007/s10404-016-1812-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1812-4

Keywords

Navigation