Abboud J-LM, Notari R (1999) Critical compilation of scales of solvent parameters. Part I. Pure, non-hydrogen bond donor solvents. Pure Appl Chem 71:645–718. doi:10.1351/pac199971040645
Article
Google Scholar
Adamiak W, Shul G, Rozniecka E, Satoh M, Chen J, Opallo M (2011) Voltammetry of Mn(III) Porphyrin in Trihexyl(tetradecyl)-phosphonium Tris(pentafluoroethyl)trifluorophosphate supported toluene in contact with an aqueous electrolyte. Electroanalysis 23:1921–1927. doi:10.1002/elan.201100188
Article
Google Scholar
Barton AFM (1991) CRC handbook of solubility parameters and other cohesion parameters, 2nd edn. CRC Press, Boca Raton
Google Scholar
Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based micro fluidic devices. Anal Chem. doi:10.1021/ac503968p
Google Scholar
Chao K-P, Wang V-S, Yang H-W, Wang C-I (2011) Estimation of effective diffusion coefficients for benzene and toluene in PDMS for direct solid phase microextraction. Polym Test 30:501–508. doi:10.1016/j.polymertesting.2011.04.004
Article
Google Scholar
Collins AM, Blanchard GJ, Marken F (2012) Spectroelectrochemical investigation of TPPMn(III/II)-driven liquid | liquid | electrode triple phase boundary anion transfer into 4-(3-Phenylpropyl)-Pyridine: ClO 4–, CO 3H–, Cl–, and F–. Electroanalysis 24:246–253. doi:10.1002/elan.201100623
Article
Google Scholar
Duffy NW, Bond AM (2006) Macroelectrode voltammetry in toluene using a phosphonium-phosphate ionic liquid as the supporting electrolyte. Electrochem Commun 8:892–898. doi:10.1016/j.elecom.2006.03.036
Article
Google Scholar
Dumitrescu I, Yancey DF, Crooks RM (2012) Dual-electrode microfluidic cell for characterizing electrocatalysts. Lab Chip 12:986. doi:10.1039/c2lc21181e
Article
Google Scholar
El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411. doi:10.1038/nature05063
Article
Google Scholar
Ghaemmaghami AM, Hancock MJ, Harrington H, Kaji H, Khademhosseini A (2012) Biomimetic tissues on a chip for drug discovery. Drug Discov Today 17:173–181. doi:10.1016/j.drudis.2011.10.029
Article
Google Scholar
Han Z, Li W, Huang Y, Zheng B (2009) Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves. Anal Chem 81:5840–5845. doi:10.1021/ac900811y
Article
Google Scholar
Jedraszko J, Nogala W, Adamiak W, Rozniecka E, Lubarska-Radziejewska I, Girault HH, Opallo M (2013) Hydrogen peroxide generation at liquid|liquid interface under conditions unfavorable for proton transfer from aqueous to organic phase. J Phys Chem C 117:20681–20688. doi:10.1021/jp406422d
Article
Google Scholar
Kaluza D, Adamiak W, Kalwarczyk T, Sozanski K, Opallo M, Jönsson-Niedziolka M (2013) Anomalous effect of flow rate on the electrochemical behavior at a liquid|liquid interface under microfluidic conditions. Langmuir 29:16034–16039. doi:10.1021/la403614z
Article
Google Scholar
Kaluza D, Adamiak W, Opallo M, Jonsson-Niedziolka M (2014) Comparison of ion transfer thermodynamics at microfluidic and droplet-based three phase electrodes. Electrochim Acta 132:158–164. doi:10.1016/j.electacta.2014.03.105
Article
Google Scholar
Katif N, MacDonald SM, Kelly AM, Galbraith E, James TD, Lubben AT, Opallo M, Marken F (2008) Electrocatalytic determination of sulfite at immobilized microdroplet liquid|liquid interfaces: the EIC′ mechanism. Electroanalysis 20:469–475. doi:10.1002/elan.200704127
Article
Google Scholar
Kim HS, Devarenne TP, Han A (2015) A high-throughput microfluidic single-cell screening platform capable of selective cell extraction. Lab Chip. doi:10.1039/C4LC01316F
Google Scholar
Kjeang E, Djilali N, Sinton D (2009) Microfluidic fuel cells: a review. J Power Sources 186:353–369. doi:10.1016/j.jpowsour.2008.10.011
Article
Google Scholar
Kowski M, Stojek Z, Palys MJ (2009) Significance of comproportionation reaction in multi-step electrochemical reduction of fullerene C60. Electrochem Commun 11:905–908. doi:10.1016/j.elecom.2009.02.024
Article
Google Scholar
Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554. doi:10.1021/ac0346712
Article
Google Scholar
MacDonald SM, Watkins JD, Gu Y, Yunus K, Fisher AC, Shul G, Opallo M, Marken F (2007) Electrochemical processes at a flowing organic solvent|aqueous electrolyte phase boundary. Electrochem Commun 9:2105–2110. doi:10.1016/j.elecom.2007.05.031
Article
Google Scholar
MacDonald SM, Watkins JD, Bull SD, Davies IR, Gu Y, Yunus K, Fisher AC, Bulman Page PC, Chan Y, Elliott C, Marken F (2008) Two-phase flow electrosynthesis: comparing N-octyl-2-pyrrolidone–aqueous and acetonitrile–aqueous three-phase boundary reactions. J Phys Org Chem 22:52–58. doi:10.1002/poc.1424
Article
Google Scholar
Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chemie Int Ed 46:1318–1320. doi:10.1002/anie.200603817
Article
Google Scholar
Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707. doi:10.1021/ac800112r
Article
Google Scholar
McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499. doi:10.1021/ar010110q
Article
Google Scholar
Mu X, Zheng W, Sun J, Zhang W, Jiang X (2013) Microfluidics for manipulating cells. Small 9:9–21
Article
Google Scholar
Olaya AJ, Ge P, Girault HH (2012) Ion transfer across the water|trifluorotoluene interface. Electrochem Commun 19:101–104. doi:10.1016/j.elecom.2012.03.010
Article
Google Scholar
Panek D, Konieczny K (2009) Pervaporative separation of toluene from wastewaters by use of filled and unfilled poly(dimethylosiloxane) (PDMS) membranes. Desalination 241:197–200. doi:10.1016/j.desal.2007.11.085
Article
Google Scholar
Pumera M, Merkoçi A, Alegret S (2006) New materials for electrochemical sensing VII. Microfluidic chip platforms. TrAC Trends Anal Chem 25:219–235. doi:10.1016/j.trac.2005.08.005
Article
Google Scholar
Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46:2396–2406. doi:10.1021/ar300314s
Article
Google Scholar
Reyes DR, Iossifidis D, Auroux P-A, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636. doi:10.1021/ac0202435
Article
Google Scholar
Rozniecka E, Jonsson-Niedziolka M, Celebanska A, Niedziolka-Jonsson J, Opallo M (2014) Selective electrochemical detection of dopamine in a microfluidic channel on carbon nanoparticulate electrodes. Analyst 139:2896–2903. doi:10.1039/c3an02207b
Article
Google Scholar
Shim J-U, Cristobal G, Link DR, Thorsen T, Jia Y, Piattelli K, Fraden S (2007) Control and measurement of the phase behavior of aqueous solutions using microfluidics. J Am Chem Soc 129:8825–8835. doi:10.1021/ja071820f
Article
Google Scholar
Stalder R, Roth GP (2013) Preparative microfluidic electrosynthesis of drug metabolites. ACS Med Chem Lett 4:1119–1123. doi:10.1021/ml400316p
Article
Google Scholar
Strutwolf J, Collins CJ, Adamiak W, Arrigan DWM (2010) Potentiometric investigation of protonation reactions at aqueous–aqueous boundaries within a dual-stream microfluidic structure. Langmuir 26:18526–18533. doi:10.1021/la102149c
Article
Google Scholar
Swensen JS, Xiao Y, Ferguson BS, Lubin AA, Lai RY, Heeger AJ, Plaxco KW, Soh HT (2009) Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J Am Chem Soc 131:4262–4266. doi:10.1021/ja806531z
Article
Google Scholar
Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116
Article
Google Scholar
Whitesides GM (2002) The origins and the future of microfluidics. Nature 442:368–373
Article
Google Scholar
Wu H, Odom TW, Chiu DT, Whitesides GM (2003) Fabrication of complex three-dimensional microchannel systems in PDMS. J Am Chem Soc 125:554–559. doi:10.1021/ja021045y
Article
Google Scholar