Skip to main content
Log in

“Law of the nano-wall” in nano-channel gas flows

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations of force-driven nano-channel gas flows show two distinct flow regions. While the bulk flow region can be determined using kinetic theory, transport in the near-wall region is dominated by gas–wall interactions. This duality enables definition of an inner-layer scaling, \(y^{*}\), based on the molecular dimensions. For gas–wall interactions determined by Lennard–Jones potential, the velocity distribution for \(y^{*} \le 3\) exhibits a universal behavior as a function of the local Knudsen number and gas–wall interaction parameters, which can be interpreted as the “law of the nano-wall.” Knowing the velocity and density distributions within this region and using the bulk flow velocity profiles from Beskok–Karniadakis model (Beskok and Karniadakis in Microscale Thermophys Eng 3(1):43–77, 1999), we outline a procedure that can correct kinetic-theory-based mass flow rate predictions in the literature for various nano-channel gas flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New York

    MATH  Google Scholar 

  • Barisik M, Beskok A (2010) MD simulations of nano-scale gas flows: a case study of couette flow at Kn = 10. In: Proceedings of the 27th symposium on rarefied gas dynamics Pacific Grove, California, July 10–15

  • Barisik M, Beskok A (2011a) Equilibrium molecular dynamics studies on nanoscale-confined fluids. Microfluid Nanofluidics 11(3):269–282. doi:10.1007/s10404-011-0794-5

    Article  Google Scholar 

  • Barisik M, Beskok A (2011b) Molecular dynamics simulations of shear driven gas flows in nano-channels. Microfluid Nanofluidics 11(5):611–622. doi:10.1007/s10404-011-0827-0

    Article  Google Scholar 

  • Barisik M, Beskok A (2012) Surface–gas interaction effects on nanoscale gas flows. Microfluid Nanofluidics 13(5):789–798. doi:10.1007/s10404-012-1000-0

    Article  Google Scholar 

  • Barisik M, Beskok A (2014) Scale effects in gas nano flows. Phys Fluids Phys Fluids 26:052003. doi:10.1063/1.4874678

    Article  Google Scholar 

  • Barisik M, Beskok A (2015) Molecular free paths in nano-scale gas flows. Microfluid Nanofluidics 18(5–6):1365–1371. doi:10.1007/s10404-014-1535-3

    Article  Google Scholar 

  • Barisik M, Kim B, Beskok A (2010) Smart wall model for molecular dynamics simulations of nanoscale gas flows. Commun Comput Phys 7:977–993

    Google Scholar 

  • Beskok A (1996) Simulations and models for gas flows in microgeometries. Ph.D. Thesis, Princeton University, Princeton, New Jersey

  • Beskok A, Karniadakis GE (1994) Simulation of heat and momentum transfer in complex micro-geometries. J Thermophys Heat Transf 8(4):647–655

    Article  Google Scholar 

  • Beskok A, Karniadakis GE (1999) A model for flows in channels, pipes and ducts at micro and nano scales. Microscale Thermophys Eng 3(1):43–77

    Article  Google Scholar 

  • Chalk SG, Miller JF (2006) Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J Power Sour 159:73–80

    Article  Google Scholar 

  • Cho JH, Yang SJ, Lee K, Park CR (2011) Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and graphene. Int J Hydrogen Energy 36:12286–12295

    Article  Google Scholar 

  • Chong KK, Grieser W, Passman A, Tamayo H, Modeland N, Burke B (2010) A Completions guide book to shale-play development: a review of successful approaches toward shale-play stimulation in the last two decades. In: Canadian unconventional resources and international petroleum conference. doi:10.2118/133874-MS

  • Evans DJ, Hoover WG (1986) Flows far from equilibrium via molecular-dynamics. Annu Rev Fluid Mech 18:243–264

    Article  MathSciNet  MATH  Google Scholar 

  • Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131(25):8875–8883

    Article  Google Scholar 

  • Juang JY, Bogy DB, Bhatia CS (2007) Design and dynamics of flying height control slider with piezoelectric nanoactuator in hard disk drives. ASME J Tribol 129(1):161–170

    Article  Google Scholar 

  • Karniadakis GE, Beskok A, Aluru N (2005) Micro flows and nano flows: fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Knudsen M (1909) Die Gesetze der Molekularstromung und der innern Reibungsstromung der Gase durch Rohren. Ann Phys 28:75–130

    Article  MATH  Google Scholar 

  • Li B, Jiang B, Fauth DJ, Gray ML, Pennline HW, Richards GA (2011) Innovative nano-layered solid sorbents for CO2 capture. Chem Commun 47(6):1719–1721

    Article  Google Scholar 

  • Loucks RG, Reed RM, Ruppel SC, Jarvie DM (2009) Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J Sediment Res 79(12):848–861

    Article  Google Scholar 

  • Michel G, Sigal R, Civan F, Devegowda D (2011) Parametric investigation of shale gas production considering nano-scale pore size distribution, formation factor, and non-Darcy flow mechanisms. In: SPE annual technical conference and exhibition

  • Sharipov F (2001) Application of the Cercignani–Lampis scattering kernel to channel gas flows. In: AIP conference proceedings (vol 585, p 347)

  • Tagawa N, Yoshioka N, Mori A (2007) Effects of ultra-thin liquid lubricant films on contact slider dynamics in hard-disk drives. Tribol Int 40:770–779

    Article  Google Scholar 

  • Venna SR, Carreon MA (2009) Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 132(1):76–78

    Article  Google Scholar 

  • Yave W, Car A, Wind J, Peinemann KV (2010) Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture. Nanotechnology 21(39):395301

    Article  Google Scholar 

Download references

Acknowledgments

Murat Barisik would like to thank H2020 Marie Skłodowska-Curie action CO-FUNDED Brain Circulation Scheme for support under the Grant Number TÜBİTAK 115C026. Ali Beskok would like to thank American Chemical Society (ACS) for support under the Grant Number 54562-ND9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Beskok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barisik, M., Beskok, A. “Law of the nano-wall” in nano-channel gas flows. Microfluid Nanofluid 20, 46 (2016). https://doi.org/10.1007/s10404-016-1713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1713-6

Keywords

Navigation