Skip to main content
Log in

Encoding and controlling of two droplet trains in a microfluidic network with the loop-like structure

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A theoretical model is derived mathematically for the encoding and controlling of the navigating of two droplet trains in a microfluidic network with a loop-like structure. The model reveals the relationship between the new outlet droplet train’s arrangement information (output signals) and the parameters including the two droplet trains’ input signals (droplet intervals), tuning flow rates, etc. The theoretical results are compared with the experimental results and they agree with each other. We find that every tuning flow rate corresponds to a certain output signal and a new droplet train can be obtained accurately. The generation orders of the successive droplets of the new droplet train remain unchanged within a certain range of the tuning flow rates. This work can be a useful reference for traffic controlling of two or more droplet trains in many microfluidic networks including the loop structure; the output signal of this work can be the input one for the next level which makes the multilevel studies possible. In addition, this study can help to promote the effective fusion of droplets and further the biological and chemical applications on droplet microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahn K, Agresti J, Chong H, Marquez M, Weitz DA (2006) Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 88:264105

    Article  Google Scholar 

  • Ajdari A (2004) Steady flows in networks of microfluidic channels: building on the analogy with electric circuits. C R Phys 5:539–546

    Article  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  • Barbier V, Willaime H, Tabeling P (2006) Producing droplets in parallel microfluidic systems. Phys Rev E 74:046306

    Article  Google Scholar 

  • Behzad MD, Seyed-Allaei H, Ejtehadi MR (2010) Simulation of droplet trains in microfluidic networks. Phys Rev E 82:037303

    Article  Google Scholar 

  • Belloul M, Engl W, Colin A, Panizza P, Ajdari A (2009) Competition between local collisions and collective hydrodynamic feedback controls traffic flows in microfluidic networks. Phys Rev Lett 102:194502

    Article  Google Scholar 

  • Bithi SS, Vanapalli SA (2010) Behavior of a train of droplets in a fluidic network with hydrodynamic traps. Biomicrofluidics 4:044110

    Article  Google Scholar 

  • Bogojevic D, Chamberlain MD, Barbulovic-Nad I, Wheeler AR (2012) A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab Chip 12:627–634

    Article  Google Scholar 

  • Bremond N, Thiam AR, Bibette J (2008) Decompressing emulsion droplets favors coalescence. Phys Rev Lett 100:024501

    Article  Google Scholar 

  • Bretherton F (1961) The motion of long bubbles in tubes. J Fluid Mech 10(2):166–188

    Article  MathSciNet  MATH  Google Scholar 

  • Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. PNAS 106:14195–14200

    Article  Google Scholar 

  • Chen G, Tan P, Chen S, Huang J, Wen W, Xu L (2013) Coalescence of pickering emulsion droplets induced by an electric field. Phys Rev Lett 110:064502

    Article  Google Scholar 

  • Cristobal G, Benoit J-P, Joanicot M, Ajdari A (2006) Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Appl Phys Lett 89:034104

    Article  Google Scholar 

  • Cybulski O, Garstecki P (2010) Dynamic memory in a microfluidic system of droplets traveling through a simple network of microchannels. Lab Chip 10:484–493

    Article  Google Scholar 

  • Engl W, Roche M, Colin A, Panizza P, Ajdari A (2005) Droplet traffic at a simple junction at low capillary numbers. Phys Rev Lett 95:208304

    Article  Google Scholar 

  • Fu T, Ma Y, Li HZ (2014) Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop. AIChE J 60(5):1920–1929

    Article  Google Scholar 

  • Fuerstman MJ, Garstecki P, Whitesides GM (2007) Coding/decoding and reversibility of droplet trains in microfluidic networks. Science 315:828–832

    Article  Google Scholar 

  • Garstecki P (2010) Microfluidics based microsystems: fundamentals and applications. Springer, Netherlands

    Google Scholar 

  • Garstecki P, Fuerstman MJ, Whitesides GM (2005) Oscillations with uniquely long periods in a microfluidic bubble generator. Nat Phys 1:168–171

    Article  Google Scholar 

  • Glawder T, Elbuken C, Ren C (2011) Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11:3774–3784

    Article  Google Scholar 

  • Gleichmann N, Malsch D, Horbert P, Henkel T (2014) Toward microfluidic design automation: a new system simulation toolkit for the in silico evaluation of droplet-based lab-on-a-chip systems. Microfluid Nanofluid 18:1095–1105

    Article  Google Scholar 

  • Hashimoto M, Whitesides GM (2010) Formation of bubbles in a multisection flow-focusing junction. Small 6:1051–1059

    Article  Google Scholar 

  • Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, de Mello AJ, Edel JB (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 12:1218–1220

    Article  Google Scholar 

  • Jeanneret R, Vest J-P, Bartolo D (2012) Hamiltonian traffic dynamics in microfluidic-loop networks. Phys Rev Lett 108:034501

    Article  Google Scholar 

  • Jousse F, Farr R, Link DR, Fuerstman MJ, Garstecki P (2006) Bifurcation of droplet flows within capillaries. Phys Rev E 74:036311

    Article  Google Scholar 

  • Labrot V, Schindler M, Guillot P, Colin A, Joanicot M (2009) Extracting the hydrodynamic resistance of droplets from their behavior in microchannel networks. Biomicrofluidics 3(1):257–265

    Article  Google Scholar 

  • Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503

    Article  Google Scholar 

  • Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem 45(16):2556–2560

    Article  Google Scholar 

  • Liu K, Deng Y, Zhang N, Li S, Ding H, Guo F, Liu W, Guo S, Zhao X-Z (2012) Generation of disk-like beads for cell encapsulation and manipulation using a droplet-based microfluidic device. Microfluid Nanofluid 13:761–767

    Article  Google Scholar 

  • Maddala J, Wang WS, Vanapalli SA, Rengaswamy R (2013) Traffic of pairs of drops in microfluidic ladder networks with fore-aft structural asymmetry. Microfluid Nanofluid 14:337–344

    Article  Google Scholar 

  • Mazutis L, Griffiths AD (2009) Preparation of monodisperse emulsions by hydrodynamic size fractionation. Appl Phys Lett 95:204103

    Article  Google Scholar 

  • Mazutis L, Baret J-C, Griffiths AD (2009) A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Lab Chip 9:2665–2672

    Article  Google Scholar 

  • Miller OJ, El Harrak A, Mangeat T, Baret J-C, Frenz L, El Debs B, Mayot E, Samuels ML, Rooney EK, Dieu P, Galvan M, Link DR, Griffiths AD (2012) High-resolution dose–response screening using droplet-based microfluidics. PNAS 109:378–383

    Article  Google Scholar 

  • Mostowfi F, Khristov K, Czarnecki J, Masliyah J, Bhattacharjee S (2007) Electric field mediated breakdown of thin liquid films separating microscopic emulsion droplets. Appl Phys Lett 90:184102

    Article  Google Scholar 

  • Murran MA, Najjaran H (2012) Direct current pulse train actuation to enhance droplet control in digital microfluidics. Appl Phys Lett 101:144102

    Article  Google Scholar 

  • Niu X, Gulati S, Edel JB, deMello AJ (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8:1837–1841

    Article  Google Scholar 

  • Niu X, Gielen F, deMello AJ, Edel JB (2009) Electro-coalescence of digitally controlled droplets. Anal Chem 81:7321–7325

    Article  Google Scholar 

  • Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20(23):9905–9908

    Article  Google Scholar 

  • Park C-W, Homsy G (1984) Two-phase displacement in Hele Shaw cells: theory. J Fluid Mech 139(1):291–308

    Article  MATH  Google Scholar 

  • Prakash M, Gershenfeld N (2007) Microfluidic bubble logic. Science 315:832–835

    Article  Google Scholar 

  • Salkin L, Schmit A, Courbin L, Panizza P (2013) Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models. Lab Chip 13(15):3022–3032

    Article  Google Scholar 

  • Schindler M, Ajdari A (2008) Droplet traffic in microfluidic networks: a simple model for understanding and designing. Phys Rev Lett 100:044501

    Article  Google Scholar 

  • Sessoms DA, Belloul M, Engl W, Roche M, Courbin L, Panizza P (2009) Droplet motion in microfluidic networks: hydrodynamic interactions and pressure-drop measurements. Phys Rev E 80:016317

    Article  Google Scholar 

  • Sessoms DA, Amon A, Courbin L, Panizza P (2010) Complex dynamics of droplet traffic in a bifurcating microfluidic channel: periodicity, multistability, and selection rules. Phys Rev Lett 105:154501

    Article  Google Scholar 

  • Singh P, Aubry N (2007) Transport and deformation of droplets in a microdevice using dielectrophoresis. Electrophoresis 28:644–657

    Article  Google Scholar 

  • Smith BJ, Gaver DP (2010) Agent-based simulations of complex droplet pattern formation in a two-branch microfluidic network. Lab Chip 10:303–312

    Article  Google Scholar 

  • Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem 42:768–772

    Article  Google Scholar 

  • Song K, Zhang L, Hu G (2012) Modeling of droplet traffic in interconnected microfluidic ladder devices. Electrophoresis 33:411–418

    Article  Google Scholar 

  • Takinoue M, Takeuchi S (2011) Droplet microfluidics for the study of artificial cells. Anal Bioanal Chem 400:1705–1716

    Article  Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  Google Scholar 

  • Wang W, Yang C, Li CM (2009) On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9:1504–1506

    Article  Google Scholar 

  • Willaime H, Barbier V, Kloul L, Maine S, Tabeling P (2006) Arnold tongues in a microfluidic drop emitter. Phys Rev Lett 96:054501

    Article  Google Scholar 

  • Wong H, Radke C, Morris S (1995) The motion of long bubbles in polygonal capillaries. Part 1. Thin films. J Fluid Mech 292:71–94

    Article  MATH  Google Scholar 

  • Wu Y, Fu T, Zhu C, Ma Y, Li HZ (2012) Asymmetrical breakup of bubbles at a microfluidic T-junction divergence: feedback effect of bubble collision. Microfluid Nanofluid 13:723–733

    Article  Google Scholar 

  • Wu Y, Fu T, Zhu C, Ma Y, Li HZ (2014) Bubble coalescence at a microfluidic T-junction convergence: from colliding to squeezing. Microfluid Nanofluid 16(1–2):275–286

    Article  Google Scholar 

  • Yamada M, Doi S, Maenaka H, Yasuda M, Seki M (2008) Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis. J Colloid Interface Sci 321:401–407

    Article  Google Scholar 

  • Zagnoni M, Baroud CN, Cooper JM (2009) Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow. Phys Rev E 80:046303

    Article  Google Scholar 

  • Zanella A, Biral A (2014) Design and analysis of a microfluidic bus network with bypass channels. IEEE International Conference on Communications 3993–3998

  • Zheng B, Tice JD, Ismagilov RF (2004) Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal Chem 76:4977–4982

    Article  Google Scholar 

  • Zhou H, Yao S (2013) Electrostatic charging and control of droplets in microfluidic devices. Lab Chip 13:962–969

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the Hunan Provincial Natural Science Foundation for Young Scholars (No. 2015JJ3121), the Scientific Research Foundation of Xiangtan University (Nos. 13KZ|KZ08022 and 13KZ|KZ08029) and the National Natural Science Foundation of China (No. 11272321) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 188 kb)

Appendices

Appendix 1: Droplet intervals in the dilution or concentration modules

Figure 11 below is a simple network, and it is also a dilution or concentration module as Sessoms et al. (2009). One droplet train moves from channel 1 whose cross section is S 1 to channel 2 whose cross section is S 2, the slip factors of droplets equal to β 1 and β 2, respectively. The flow rate of channel 1 is Q c1, and the flow rate of channel 2 is \(Q_{c1} + Q_{c2}\) after dilution. Q c2 can be minus, but all the droplets from channel 1 will go through channel 2.

Fig. 11
figure 11

A schematic diagram of droplet train dilution or concentration module

For the module, we assume that droplets entering frequency is f 1 while droplets exit frequency is f 2 . The velocities of channel 1 and 2 are calculated as below:

$$\left\{ {\begin{array}{*{20}l} {V_{1} = \beta_{1} Q_{c1} /S_{1} ;} \hfill \\ {V_{2} = \beta_{2} \left( {Q_{c1} + Q_{c2} } \right)/S_{2} } \hfill \\ \end{array} } \right..$$
(21)

After Δt time, the entering droplet number is \(f_{1} \varDelta t\), and the exit droplet number is \(f_{2} \varDelta t\). Meanwhile, the distance of any droplet from channel 1 and 2 is:

$$\left\{ {\begin{array}{*{20}l} {L_{1} = V_{1} \varDelta t = \beta_{1} Q_{c1} \varDelta t/S_{1} ;} \hfill \\ {L_{2} = V_{2} \varDelta t = \beta_{2} \left( {Q_{c1} + Q_{c2} } \right)\varDelta t/S_{2} .} \hfill \\ \end{array} } \right.$$
(22)

If we let λ 1 and λ 2 represent the space intervals between droplets which traffic in channel 1 and 2, respectively, then we have:

$$\left\{ {\begin{array}{*{20}l} {\lambda_{1} = L_{1} /\left( {f_{1} \varDelta t} \right) = \beta_{1} Q_{c1} /\left( {S_{1} f_{1} } \right);} \hfill \\ {\lambda_{2} = L_{2} /\left( {f_{2} \varDelta t} \right) = \beta_{2} \left( {Q_{c1} + Q_{c2} } \right)/\left( {S_{2} f_{2} } \right).} \hfill \\ \end{array} } \right.$$
(23)

We can get f 1 and f 2 from Eq. (23):

$$\left\{ {\begin{array}{*{20}l} {f_{1} = \beta_{1} Q_{c1} /\left( {S_{1} \lambda_{1} } \right);} \hfill \\ {f_{2} = \beta_{2} \left( {Q_{c1} + Q_{c2} } \right)/\left( {S_{2} \lambda_{2} } \right).} \hfill \\ \end{array} } \right.$$
(24)

When droplets traffic in a microfluidic network, all the droplets number in the network will be stable under a stable traffic state. That is to say: f 1 = f 2. Combining with Eq. (24), we have:

$$\lambda_{2} = S_{1} \beta_{2} \left( {Q_{c1} + Q_{c2} } \right)\lambda_{1} /\left( {S_{2} \beta_{1} Q_{c1} } \right)$$
(25)

If the microchannels’ cross sections are equal to S and the slip factors of droplets in the microchannels are equal to β (Bithi and Vanapalli 2010; Jeanneret et al. 2012), we have:

$$\lambda_{2} = \left( {Q_{c1} + Q_{c2} } \right)\lambda_{1} /Q_{c1}$$
(26)

Appendix 2: Droplet number in branch A and branch B

The total hydrodynamic resistances for branches A, B and C are (n C  = 0):

$$\left\{ {\begin{array}{*{20}l} {R_{A} = \overline{{R_{A} }} + n_{A} R_{d1} ;} \hfill \\ {R_{B} = \overline{{R_{B} }} + n_{B} R_{d2} ;} \hfill \\ {R_{C} = \overline{{R_{C} }} .} \hfill \\ \end{array} } \right.$$
(27)

We also know that:

$$\left\{ {\begin{array}{*{20}l} {n_{A} = L_{A} /\lambda_{1}^{\text{III}} ;} \hfill \\ {n_{B} = L_{B} /\lambda_{2}^{\text{III}} .} \hfill \\ \end{array} } \right.$$
(28)

Combining with Eqs. (8), (10) and (27), we have:

$$\left\{ {\begin{array}{*{20}l} {\lambda_{1}^{\text{III}} = c_{1} \left( {c_{3} + c_{4} R_{d2} n_{B} } \right)/\left( {c_{5} + R_{d1} n_{A} + R_{d2} n_{B} } \right);} \hfill \\ {\lambda_{2}^{\text{III}} = c_{2} \left( {c_{6} + c_{4} R_{d1} n_{A} } \right)/\left( {c_{5} + R_{d1} n_{A} + R_{d2} n_{B} } \right).} \hfill \\ \end{array} } \right.$$
(29)

where the coefficients above are as follows:

$$\left\{ {\begin{array}{*{20}l} {c_{1} = \lambda_{1}^{\text{I}} /Q_{1} ;} \hfill \\ {c_{2} = \lambda_{2}^{\text{I}} /Q_{2} ;} \hfill \\ {c_{3} = \left( {Q_{1} + Q_{1T} } \right)\left( {\overline{{R_{B} }} + \overline{{R_{C} }} } \right) + \left( {Q_{2} + Q_{2T} } \right)\overline{{R_{B} }} ;} \hfill \\ {c_{4} = Q_{1} + Q_{2} + Q_{1T} + Q_{2T} ;} \hfill \\ {c_{5} = \overline{{R_{A} }} + \overline{{R_{B} }} + \overline{{R_{C} }} ;} \hfill \\ {c_{6} = \left( {Q_{1} + Q_{1T} } \right)\overline{{R_{A} }} + \left( {Q_{2} + Q_{2T} } \right)\left( {\overline{{R_{A} }} + \overline{{R_{C} }} } \right).} \hfill \\ \end{array} } \right.$$
(30)

Substituting Eq. (29) into Eq. (28) yields

$$\left\{ {\begin{array}{*{20}l} {n_{A} = \left( {c_{5} + R_{d1} n_{A} + R_{d2} n_{B} } \right)L_{A} /\left[ {c_{1} \left( {c_{3} + c_{4} R_{d2} n_{B} } \right)} \right];} \hfill \\ {n_{B} = \left( {c_{5} + R_{d1} n_{A} + R_{d2} n_{B} } \right)L_{B} /\left[ {c_{2} \left( {c_{6} + c_{4} R_{d1} n_{A} } \right)} \right].} \hfill \\ \end{array} } \right.$$
(31)

Finally, n A and n B can be got by solving Eq. (31).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, K., Hu, G., Hu, X. et al. Encoding and controlling of two droplet trains in a microfluidic network with the loop-like structure. Microfluid Nanofluid 19, 1363–1375 (2015). https://doi.org/10.1007/s10404-015-1651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1651-8

Keywords

Navigation