Skip to main content
Log in

Electroosmotic flow through packed beds of granular materials

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

An Erratum to this article was published on 17 July 2015

Abstract

Electrical charges originate at most solid surfaces in contact with aqueous electrolytes which result in the formation of an electrical double layer. If an external electric field is tangentially applied to the double layer, an electroosmotic flow is induced which can be employed for various applications such as microfluidic pumps. Here, highly porous materials are especially suitable since they generate significant flow rates along with high pump pressures. The models which are currently used to describe the electroosmotic flow through porous substrates are based on the so-called parallel capillary flow model. In terms of packed beds of granular materials, these models have the disadvantages of oversimplifying the geometry to tortuous capillaries while neglecting intra- and inter-pore connections, varying pore cross-sectional geometries as well as the influence of the packed bed walls. In the current research, we employ dimensional reasoning (Buckingham \(\Pi\) theorem) to derive a phenomenological model which relates the electroosmotic flow to the averaged parameters of the packed bed as well as to the relevant physicochemical parameters. A comprehensive set of experiments is carried out to infer a semiempirical correlation which can be universally applied to packed beds of arbitrary granular materials. Additionally, we derive a dynamic model of the center-of-mass motion of the fluidic parts of the experimental setup. The model allows for an evaluation of the influence of Joule heating without monitoring the temperature in the bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ai Y, Yalcin SE, Gu D, Baysal O, Baumgart H, Qian S, Beskok A (2010) A low-voltage nano-porous electroosmotic pump. J Colloid Interface Sci 350(2):465–470

    Article  Google Scholar 

  • Barz DPJ, Ehrhard P (2005) Model and verification of electrokinetic flow and transport in a micro-electrophoresis device. Lab Chip 5(9):949–958

    Article  Google Scholar 

  • Barz DPJ, Steen PH (2013) A dynamic model of the electroosmotic droplet switch. Phys Fluids 25(9):097,104

    Article  Google Scholar 

  • Barz DPJ, Vogel MJ, Steen PH (2009) Determination of the zeta potential of porous substrates by droplet deflection. I. The influence of ionic strength and pH value of an aqueous electrolyte in contact with a borosilicate surface. Langmuir 25(3):1842–1850

    Article  Google Scholar 

  • Barz DPJ, Zadeh H, Ehrhard P (2011) Measurements and simulations of time-dependent flow fields within an electrokinetic micromixer. J Fluid Mech 676:265–293

    Article  MATH  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena. Wiley, London

    Google Scholar 

  • Blake TD, Haynes JM (1969) Kinetics of liquid/liquid displacement. J Colloid Interface Sci 30(3):421–423

    Article  Google Scholar 

  • Bockelmann H, Heuveline V, Barz DP (2012) Optimization of an electrokinetic mixer for microfluidic applications. Biomicrofluidics 6(2):024,123

    Article  Google Scholar 

  • Borowsky J, Lu Q, Collins GE (2008a) High pressure electroosmotic pump based on a packed bed planar microchip. Sens Actuators B 131(1):333–339

    Article  Google Scholar 

  • Borowsky JF, Giordano BC, Lu Q, Terray A, Collins GE (2008b) Electroosmotic flow-based pump for liquid chromatography on a planar microchip. Anal Chem 80(21):8287–8292

    Article  Google Scholar 

  • Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev IV 4:345–376

    Article  Google Scholar 

  • Cao Z, Yuan L, Liu YF, Yao S, Yobas L (2012) Microchannel plate electro-osmotic pump. Microfluid Nanofluid 13(2):279–288

    Article  Google Scholar 

  • Chang C, Yang RR (2007) Electrokinetic mixing in microfluidic systems. Microfluid Nanofluid 3(5):501–525

    Article  Google Scholar 

  • Cikalo M, Bartle K, Robson M, Myers P, Euerby M (1998) Capillary electrochromatography: tutorial review. Analyst 123(7):87R–102R

    Article  Google Scholar 

  • Das S, Chanda S, Eijkel J, Tas N, Chakraborty S, Mitra SK (2014) Filling of charged cylindrical capillaries. Phys Rev E 90(4):043,011

    Article  Google Scholar 

  • de Klerk A (2003) Voidage variation in packed beds at small column to particle diameter ratio. AIChE J 49(8):2022–2029

    Article  Google Scholar 

  • Delgado A, González-Caballero F, Hunter R, Koopal L, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci 309(2):194–224

    Article  Google Scholar 

  • Dias RP, Teixeira JA, Mota MG, Yelshin AI (2004) Particulate binary mixtures: dependence of packing porosity on particle size ratio. Ind Eng Chem Res 43(24):7912–7919

    Article  Google Scholar 

  • Dong W, Young-Ho C (2007) A continuous electrical cell lysis device using a low DC voltage for a cell transport and rupture. Sens Actuators B 124(1):84–89

    Article  Google Scholar 

  • Falahati H, Wong L, Davarpanah L, Garg A, Schmitz P, Barz D (2014) The zeta potential of PMMA in contact with electrolytes of various conditions: theoretical and experimental investigation. ELECTROPHORESIS 35:870–882

    Article  Google Scholar 

  • Glawdel T, Elbuken C, Lee LE, Ren CL (2009) Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)—towards water toxicity testing. Lab Chip 9(22):3243–3250

    Article  Google Scholar 

  • Gu C, Jia Z, Zhu Z, He C, Wang W, Morgan A, Lu JJ, Liu S (2012) Miniaturized electroosmotic pump capable of generating pressures of more than 1200 bar. Anal Chem 84(21):9609–9614

    Google Scholar 

  • Heuck FC, Staufer U (2011) Low voltage electroosmotic pump for high density integration into microfabricated fluidic systems. Microfluid Nanofluid 10(6):1317–1332

    Article  Google Scholar 

  • Hu J, Chao C (2007) A study of the performance of microfabricated electroosmotic pump. Sens Actuators A 135(1):273–282

    Article  Google Scholar 

  • Hunter R (1981) Zeta potential in colloid science: principles and applications. Academic Press, London

    Google Scholar 

  • Jacobson SC, Ramsey JM (1997) Electrokinetic focusing in microfabricated channel structures. Anal Chem 69(16):3212–3217

    Article  Google Scholar 

  • Jahanshahi A, Axisa F, Vanfleteren J (2012) Fabrication of a biocompatible flexible electroosmosis micropump. Microfluid Nanofluid 12(5):771–777

    Article  Google Scholar 

  • Kang Y, Tan SC, Yang C, Huang X (2007) Electrokinetic pumping using packed microcapillary. Sens Actuators A 133(2):375–382

    Article  Google Scholar 

  • Kim D, Posner JD, Santiago JG (2008) High flow rate per power electroosmotic pumping using low ion density solvents. Sens Actuators A 141(1):201–212

    Article  Google Scholar 

  • Kirby B, Hasselbrink E Jr (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques and effects on separations. ELECTROPHORESIS 25(2):187–202

    Article  Google Scholar 

  • Kwon K, Park CW, Kim D (2012) High-flowrate, compact electroosmotic pumps with porous polymer track-etch membranes. Sens Actuators A 175:108–115

    Article  Google Scholar 

  • Lazar L, Karger B (2002) Multiple open-channel electroosmotic pumping system for microfluidic sample handling. Anal Chem 74(24):6259–6268

    Article  Google Scholar 

  • Leese H, Mattia D (2014) Electroosmotic flow in nanoporous membranes in the region of electric double layer overlap. Microfluid Nanofluid 16(4). doi:10.1007/s10404-013-1255-0

  • Mazur P, Overbeek J (1951) On electro-osmosis and streaming-potentials in diaphragms. II. General quantitative relationship between electro-kinetic effects. Rec Trav Chim 70:83–91

    Article  Google Scholar 

  • Mehta D, Hawley MC (1969) Wall effect in packed columns. Ind Eng Chem Process Des Dev 8(2):280–282

    Article  Google Scholar 

  • Niven RK (2002) Physical insight into the Ergun and Wen and Yu equations for fluid flow in packed and fluidised beds. Chem Eng Sci 57(3):527–534

    Article  Google Scholar 

  • Ouchiyama N, Tanaka T (1981) Porosity of a mass of solid particles having a range of sizes. Ind Eng Chem Fundam 20(1):66–71

    Article  Google Scholar 

  • Popescu MN, Ralston J, Sedev R (2008) Capillary rise with velocity-dependent dynamic contact angle. Langmuir 24(21):12,710–12,716

    Article  Google Scholar 

  • Pu Q, Liu S (2004) Microfabricated electroosmotic pump for capillary-based sequential injection analysis. Anal Chim Acta 511(1):105–112

    Article  Google Scholar 

  • Reichmuth DS, Chirica GS, Kirby BJ (2003) Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives. Sens Actuators B 92(1):37–43

    Article  Google Scholar 

  • Reuss F (1809) Sour un nouvel effet de l’électricité galvanique. Mémoires de la societé impériale des naturalistes de Moscou 2:327–337

    Google Scholar 

  • Rice C, Whitehead R (1965) Electrokinetic flow in a narrow capillary. J Phys Chem 11:4017–4024

    Article  Google Scholar 

  • Saini R, Garg A, Barz DP (2014) Streaming potential revisited: the influence of convection on the surface conductivity. Langmuir 30(36):10,950–10,961

    Article  Google Scholar 

  • Scales N, Tait R (2006) Modeling electroosmotic and pressure-driven flows in porous microfluidic devices: zeta potential and porosity changes near the channel walls. J Chem Phys 125:094714-1–094714-12

  • Scales P, Grieser F, Healy T (1992) Electrokinetics of the silica-solution interface: a flat plate streaming potential study. Langmuir 8:965–974

    Article  Google Scholar 

  • Shin W, Lee JM, Nagarale RK, Shin SJ, Heller A (2011) A miniature, nongassing electroosmotic pump operating at 0.5 V. J Am Chem Soc 133(8):2374–2377

    Article  Google Scholar 

  • Simal-Gándara J (2004) The place of capillary electrochromatography among separation techniques—a review. Crit Rev Anal Chem 34(2):85–94. doi:10.1080/10408340490475867

    Article  Google Scholar 

  • Smoluchowski MV (1903) Contribution à la théorie de l’endosmose électrique et de quelques phenoménes corrélatifs. Bull Int Acad Sci Crac 8:182–200

    Google Scholar 

  • Tang G, Yang C, Chai J, Gong H (2004) Joule heating effect on electroosmotic flow and mass species transport in a microcapillary. Int J Heat Mass Transf 47:215–227

    Article  MATH  Google Scholar 

  • Tripp J, Svec F, Fréchet J, Zeng S, Mikkelsen J, Santiago J (2004) High-pressure electroosmotic pumps based on porous polymer monoliths. Sens Actuators B 99(1):66–73

    Article  Google Scholar 

  • Vallano PT, Remcho VT (2000) Modeling interparticle and intraparticle (perfusive) electroosmotic flow in capillary electrochromatography. Anal Chem 72:4255–4265

    Article  Google Scholar 

  • van den Bosch SE, Heemstra S, Kraak JC, Poppe H (1996) Experiences with packed capillary electrochromatography at ambient pressure. J Chromatogr A 755(2):165–177

    Article  Google Scholar 

  • Waghmare PR, Mitra SK (2010) Modeling of combined electroosmotic and capillary flow in microchannels. Anal Chim Acta 663(2):117–126

    Article  Google Scholar 

  • Wang C, Wang L, Zhu X, Wang Y, Xue J (2012) Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes. Lab Chip 12(9):1710–1716

    Article  Google Scholar 

  • Wang P, Chen Z, Chang HC (2006) A new electro-osmotic pump based on silica monoliths. Sens Actuators B 113(1):500–509

    Article  MathSciNet  Google Scholar 

  • Wang X, Cheng C, Wang S, Liu S (2009) Electro osmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid 6:145–162

    Article  Google Scholar 

  • Waters L, Jacobson S, Kroutchinina N, Khandurina J, Foote R, Ramsey J (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal Chem 70(1):158–162

    Article  Google Scholar 

  • Xuan X (2008) Joule heating in electrokinetic flow. ELECTROPHORESIS 29(1):33–43

    Article  Google Scholar 

  • Yao S, Santiago J (2003) Porous glass electroosmotic pumps: theory. J Colloid Interface Sci 268:133–142

    Article  Google Scholar 

  • Yao S, Hertzog D, Zeng S, Mikkelesen J Jr, Santiago J (2003) Porous glass electroosmotic pumps: design and experiments. J Colloid Interface Sci 268:143–153

    Article  Google Scholar 

  • Zeng S, Chen C, Mikkelsen J, Santiago J (2001) Fabrication and characterization of electroosmotic micropumps. Sens Actuators B 79:107–114

    Article  Google Scholar 

  • Zeng S, Chen CH, Santiago JG, Chen JR, Zare RN, Tripp JA, Frantisek S, Fréchet JM (2002) Electroosmotic flow pumps with polymer frits. Sens Actuators B 82(2–3):209–212

    Article  Google Scholar 

Download references

Acknowledgments

The Natural Sciences and Engineering Research Council of Canada (NSERC) and DuPont Canada are gratefully acknowledge for providing financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik P. J. Barz.

Appendix

Appendix

Table 1 lists the conditions used to perform the experiments in this work. In detail, we used 9 packed beds, 3 pH values, 5 electric field strengths, and up to 4 ionic strengths. All in all, we perform 342 measurements to cover the widest possible range of the dimensionless groups given in Eq. (6).

Table 1 Experimental parameter range of the electroosmosis experiments

Table 2 lists the groups of particle mixtures used for the interpretation of the packed bed parameters where \(\delta = \frac{d}{\rm D}\) is the ratio of small to large particle diameter and \(v_d\) is the volume fraction of the small particles.

Table 2 Particle size ratios and weight fractions for different packed beds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, R., Kenny, M. & Barz, D.P.J. Electroosmotic flow through packed beds of granular materials. Microfluid Nanofluid 19, 693–708 (2015). https://doi.org/10.1007/s10404-015-1594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1594-0

Keywords

Navigation