Skip to main content

Advertisement

Log in

Printing 3D microfluidic chips with a 3D sugar printer

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This study demonstrated how to quickly and effectively print two-dimensional (2D) and three-dimensional (3D) microfluidic chips with a low-cost 3D sugar printer. The sugar printer was modified from a desktop 3D printer by redesigning the extruder, so the melting sugar could be extruded with pneumatic driving. Sacrificial sugar lines were first printed on a base layer followed by casting polydimethylsiloxane (PDMS) onto the layer and repeating. Microchannels were then printed in the PDMS solvent, microfluidic chips dropped into hot water to dissolve the sugar lines after the PDMS was solidified, and the microfluidic chips did not need further sealing. Different types of sugar utilized for printing material were studied with results indicating that maltitol exhibited a stable flow property compared with other sugars such as caramel or sucrose. Low cost is a significant advantage of this type of sugar printer as the machine may be purchased for only approximately $800. Additionally, as demonstrated in this study, the printed 3D microfluidic chip is a useful tool utilized for cell culture, thus proving the 3D printer is a powerful tool for medical/biological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelgawad M, Wu C, Chien W, Geddie WR, Jewett MAS, Sun Y (2011) A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS). Lab Chip 11(3):545. doi:10.1039/c0lc00093k

    Article  Google Scholar 

  • Abgrall P, Lattes C, Conédéra V, Dollat X, Colin S, Gué AM (2006) A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films. J Micromech Microeng 16(1):113–121. doi:10.1088/0960-1317/16/1/016

    Article  Google Scholar 

  • Anderson JR, Chiu DT, Jackman RJ, Cherniavskaya O, McDonald JC, Wu H, Whitesides SH, Whitesides GM (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72(14):3158–3164

    Article  Google Scholar 

  • Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS (2013) Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13(16):3246–3252. doi:10.1039/c3lc50493j

    Article  Google Scholar 

  • Bellan LM, Singh SP, Henderson PW, Porri TJ, Craighead HG, Spector JA (2009) Fabrication of an artificial 3-dimensional vascular network using sacrificial sugar structures. Soft Matter 5(7):1354. doi:10.1039/b819905a

    Article  Google Scholar 

  • Bhuyan MK, Courvoisier F, Lacourt PA, Jacquot M, Furfaro L, Withford MJ, Dudley JM (2010) High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams. Opt Express 18(2):566–574. doi:10.1364/OE.18.000566

    Article  Google Scholar 

  • Canali C, Mohanty S, Heiskanen A, Muhammad HB, Martinsen ØG, Dufva M, Wolff A, Emnéus J (2015) Impedance spectroscopic characterisation of porosity in 3D cell culture scaffolds with different channel networks. Electroanal 27(1):193–199. doi:10.1002/elan.201400413

    Article  Google Scholar 

  • Chiu DT, Jeon NL, Huang S, Kane RS, Wargo CJ, Choi IS, Ingber DE, Whitesides GM (2000) Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. P Natl Acad Sci USA 97(6):2408–2413. doi:10.1073/pnas.040562297

    Article  Google Scholar 

  • Di Carlo D, Huang Y, Andersson-Svahn H (2014) Emerging investigators: new challenges spawn new innovations. Lab Chip 14(15):2599. doi:10.1039/c4lc90058h

    Article  Google Scholar 

  • Hanada Y, Sugioka K, Kawano H, Ishikawa IS, Miyawaki A, Midorikawa K (2008) Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed Microdevices 10(3):403–410. doi:10.1007/s10544-007-9149-0

    Article  Google Scholar 

  • Hanada Y, Sugioka K, Shihira-Ishikawa I, Kawano H, Miyawaki A, Midorikawa K (2011) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11(12):2109–2115. doi:10.1039/c1lc20101h

    Article  Google Scholar 

  • He S, Chen F, Yang Q, Liu K, Shan C, Bian H, Liu H, Meng X, Si J, Zhao Y, Hou X (2012) Facile fabrication of true three-dimensional microcoils inside fused silica by a femtosecond laser. J Micromech Microeng 22(10501710). doi:10.1088/0960-1317/22/10/105017

  • Huang J, Kim J, Agrawal N, Sudarson AP, Maxim JE, Jayaraman A, Ugaz VM (2009) Rapid Fabrication of Bio-inspired 3D Microfluidic Vascular Networks. Adv Mater 21(35):3567. doi:10.1002/adma.200900584

    Article  Google Scholar 

  • Koyata Y, Ikeuchi M, Ikuta K (2013) Sealless 3-D microfluidic channel fabrication by sacrificial caramel template direct-patterning. Micro Electro Mechanical Systems (MEMS), Taipei, 2013311-314. doi: 10.1109/MEMSYS.2013.6474240

  • Lee J, Paek J, Kim J (2012) Sucrose-based fabrication of 3D-networked, cylindrical microfluidic channels for rapid prototyping of lab-on-a-chip and vaso-mimetic devices. Lab Chip 12(15):2638–2642. doi:10.1039/c2lc40267j

    Article  Google Scholar 

  • Li J, Rickett TA, Shi R (2009) Biomimetic nerve scaffolds with aligned intraluminal microchannels: a “sweet” approach to tissue engineering. Langmuir 25(3):1813–1817. doi:10.1021/la803522f

    Article  Google Scholar 

  • Liao Y, Song J, Li E, Luo Y, Shen Y, Chen D, Cheng Y, Xu Z, Sugioka K, Midorikawa K (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12(4):746–749. doi:10.1039/c2lc21015k

    Article  Google Scholar 

  • Love JC, Anderson JR, Whitesides GM (2001) Fabrication of three-dimensional microfluidic systems by soft lithography. MRS Bull 26(7):523–528. doi:10.1557/mrs2001.124

    Article  Google Scholar 

  • Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DT, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774. doi:10.1038/NMAT3357

    Article  Google Scholar 

  • Mills KL, Huh D, Takayama S, Thouless MD (2010) Instantaneous fabrication of arrays of normally closed, adjustable, and reversible nanochannels by tunnel cracking. Lab Chip 10(12):1627–1630. doi:10.1039/c000863j

    Article  Google Scholar 

  • Romanato F, Tormen M, Businaro L, Vaccari L, Stomeo T, Passaseo A, Di Fabrizio E (2004) X-ray lithography for 3D microfluidic applications. Microelectron Eng 73-4(SI):870–875. doi:10.1016/j.mee.2004.03.067

  • Song S, Lee C, Kim T, Shin I, Jun S, Jung H (2010) A rapid and simple fabrication method for 3-dimensional circular microfluidic channel using metal wire removal process. Microfluid Nanofluid 9(2):533–540. doi:10.1007/s10404-010-0570-y

    Article  Google Scholar 

  • Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2(4):265–271. doi:10.1038/nmat863

    Article  Google Scholar 

  • Wu H, Odom TW, Chiu DT, Whitesides GM (2003) Fabrication of complex three-dimensional microchannel systems in PDMS. J Am Chem Soc 125(2):554–559. doi:10.1021/ja021045y

    Article  Google Scholar 

  • Wu W, Hansen CJ, Aragón AM, Geubelle PH, White SR, Lewis JA (2010) Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter 6(4):739. doi:10.1039/b918436h

    Article  Google Scholar 

  • Zhang M, Wu J, Wang L, Xiao K, Wen W (2010) A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab Chip 10(9):1199–1203. doi:10.1039/b923101c

    Article  Google Scholar 

Download references

Acknowledgments

This paper is sponsored by the Science Fund for Creative Research Groups of National Natural Science Foundation of China (No. 51221004) and National Natural Science Foundation of China (No. 51375440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Fu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Qiu, J., Fu, J. et al. Printing 3D microfluidic chips with a 3D sugar printer. Microfluid Nanofluid 19, 447–456 (2015). https://doi.org/10.1007/s10404-015-1571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1571-7

Keywords

Navigation