Skip to main content

Advertisement

Log in

Microfluidic platform for human placenta-derived multipotent stem cells culture and applied for enhanced neuronal differentiation

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Stem cell research grows rapidly in recent years due to its potential in clinical applications. Since the stem cell behavior is influenced by environmental cues, investigation of the stem cell differentiation under chemical as well as physical stimulation environment is important. Under traditional petri dish culturing conditions, directly applying physical stimulation on the cells is difficult. Microfluidic chip, on the other hand, provides a manageable platform to stimulate cells. In this research, we use microfluidic chip to culture human placenta-derived multipotent stem cells (PDMCs) and apply chemical and physical stimulations to the cells. PDMCs is a newly developed human stem cell source that are easier to access with less ethical issues compare to other human stem cells. This research shows that the microfluidic platform could provide adequate in vitro microenvironment that maintain pluripotency and proliferative potential for PDMCs culture. PDMCs were successfully differentiate to neuronal cells through chemical and physical–chemical stimulation on the microfluidic platform. Our results show that through physical shear stress stimulation, PDMCs can result in enhanced neuronal cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bahmani L, Taha MF, Javeri A (2014) Coculture with embryonic stem cells improves neural differentiation of adipose tissue-derived stem cells. Neuroscience. doi:10.1016/j.neuroscience.2014.1004.1063

    MATH  Google Scholar 

  • Blackman BR, Garcia-Cardena G, Gimbrone MA (2002) A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J Biomech Eng Trans ASME 124(4):397–407

    Article  Google Scholar 

  • Breen LT, McHugh PE, McCormack BA, Muir G, Quinlan NJ, Heraty KB, Murphy BP (2006) Development of a novel bioreactor to apply shear stress and tensile strain simultaneously to cell monolayers. Rev Sci Instrum 77(10):104301

  • Brodsky AN, Zhang J, Visconti RP, Harcum SW (2013) Expansion of mesenchymal stem cells under atmospheric carbon dioxide. Biotechnol Prog 29(5):1298–1306

    Article  Google Scholar 

  • Chang CJ, Yen ML, Chen YC, Chien CC, Huang HI, Bai CH, Yen BL (2006) Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 24(11):2466–2477. doi:10.1634/stemcells.2006-0071

    Article  Google Scholar 

  • Chien CC, Yen BL, Lee FK, Lai TH, Chen YC, Chan SH, Huang HI (2006) In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 24(7):1759–1768

    Article  Google Scholar 

  • Choi Y, Nam TG (2012) Chemical biology in stem cell research. Arch Pharm Res 35(2):281–297

    Article  MathSciNet  Google Scholar 

  • Dang SM, Gerecht-Nir S, Chen J, Itskovitz-Eldor J, Zandstra PW (2004) Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 22(3):275–282

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984

    Article  Google Scholar 

  • Esch MB, Sung JH, Yang J, Yu CH, Yu JJ, March JC, Shuler ML (2012) On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’ devices. Biomed Microdevices 14(5):895–906

    Article  Google Scholar 

  • Gao XH, Zhang X, Tong HY, Lin BC, Qin JH (2011) A simple elastic membrane-based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress. Electrophoresis 32(23):3431–3436

    Article  Google Scholar 

  • Hung PJ, Lee PJ, Sabounchi P, Lin R, Lee LP (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bioeng 89(1):1–8

    Article  Google Scholar 

  • Jung JH, Kim GY, Seo TS (2011) An integrated passive micromixer–magnetic separation–capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level. Lab Chip 11(20):3465–3470

    Article  Google Scholar 

  • Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol UK 2(11–12):584–603

    Article  MathSciNet  Google Scholar 

  • Korin N, Bransky A, Dinnar U, Levenberg S (2009) Periodic “flow-stop” perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture. Biomed Microdevices 11(1):87–94

    Article  Google Scholar 

  • Lee GB, Wu HW, Lin CC (2011) Stem cells in microfluidics. Biomicrofluidics 5(1). doi:10.1063/1.3528299

  • Li DY, Gao YD, Majumdar D, Jovanovic B, Shaifer C, Lin PC, Zijlstra A, Webb DJ (2011) A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology. Biomed Microdevices 13(3):539–548. doi:10.1007/s10544-011-9523-9

    Article  Google Scholar 

  • Li H, Wijekoon A, Leipzig ND (2012a) 3D Differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds. Plos One 7(11):48824

  • Li XJ, Valadez AV, Zuo P, Nie ZH (2012b) Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4(12):1509–1525

    Article  Google Scholar 

  • Li WL, Jiang K, Wei WG, Shi Y, Ding S (2013) Chemical approaches to studying stem cell biology. Cell Res 23(1):81–91

    Article  Google Scholar 

  • Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24(2):185–187

    Article  Google Scholar 

  • Myers KA, Shrive NG, Hart DA (2007) A novel apparatus applying long term intermittent cyclic hydrostatic pressure to in vitro cell cultures. J Biosci Bioeng 103(6):578–581. doi:10.1263/jbb.103.578

    Article  Google Scholar 

  • Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, Niwa H, Yamato M, Vacanti CA (2014) Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature 505(7485):641–647

    Article  Google Scholar 

  • Quake SR, Unger MA, Chou HP, Thorsen T, Scherer A (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116

    Article  Google Scholar 

  • Rismanchi N, Floyd CL, Berman RF, Lyeth BG (2003) Cell death and long-term maintenance of neuron-like state after differentiation of rat bone marrow stromal cells: a comparison of protocols. Brain Res 991(1–2):46–55

    Article  Google Scholar 

  • Rottmar M, Ackerknecht S, Wick P, Maniura-Weber K (2011) A High Throughput System for long term application of intermittent cyclic hydrostatic pressure on cells in culture. J Biomech Eng Trans ASME 133(2):024502

  • Scaglione S, Wendt D, Miggino S, Papadimitropoulos A, Fato M, Quarto R, Martin I (2008) Effects of fluid flow and calcium phosphate coating on human bone marrow stromal cells cultured in a defined 2D model system. J Biomed Mater Res A 86A(2):411–419

    Article  Google Scholar 

  • Shao JB, Wu L, Wu JZ, Zheng YH, Zhao H, Jin QH, Zhao JL (2009) Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip 9(21):3118–3125

    Article  Google Scholar 

  • Sim WY, Park SW, Park SH, Min BH, Park SR, Yang SS (2007) A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab Chip 7(12):1775–1782

    Article  Google Scholar 

  • Sotoudeh M, Jalali S, Usami S, Shyy JYJ, Chien S (1998) A strain device imposing dynamic and uniform equi-biaxial strain to cultured cells. Ann Biomed Eng 26(2):181–189

    Article  Google Scholar 

  • Tropel P, Platet N, Platel JC, Noel D, Albrieux M, Benabid AL, Berger F (2006) Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 24(12):2868–2876

    Article  Google Scholar 

  • van der Pol L, Tramper J (1998) Shear sensitivity of animal cells from a culture-medium perspective. Trends Biotechnol 16(8):323–328

    Article  Google Scholar 

  • van Noort D, Ong SM, Zhang C, Zhang SF, Arooz T, Yu H (2009) Stem cells in microfluidics. Biotechnol Prog 25(1):52–60

    Article  Google Scholar 

  • Wang L, Liu WM, Wang YL, Wang JC, Tu Q, Liu R, Wang JY (2013) Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell–drug interactions in a dynamic hypoxia microenvironment. Lab Chip 13(4):695–705

    Article  Google Scholar 

  • Wu HW, Lin CC, Lee GB (2011) Stem cells in microfluidics. Biomicrofluidics 5(1):013401

  • Wu H-M, Zhang L-F, Ding P-S, Liu Y-J, Wu X, Zhou J-N (2014) Microglial activation mediates host neuronal survival induced by neural stem cells. J Cell Mol Med. doi:10.1111/jcmm.12281

    Google Scholar 

  • Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Xu ZR, Yang CG, Liu CH, Zhou Z, Fang J, Wang JH (2010) An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture. Talanta 80(3):1088–1093

    Article  Google Scholar 

  • Yen BL, Huang HI, Chien CC, Jui HY, Ko BS, Yao M, Shun CT, Yen ML, Lee MC, Chen YC (2005) Isolation of multipotent cells from human term placenta. Stem Cells 23(1):3–9

    Article  Google Scholar 

  • Yen BL, Chien CC, Chen YC, Chen JT, Huang JS, Lee K, Huang HI (2008) Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Eng Part A 14(1):9–17

    Article  Google Scholar 

  • Yu HR, Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW (2007) A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7(3):302–309. doi:10.1039/b614872g

    Article  Google Scholar 

  • Zhang C, van Noort D (2011) Cells in microfluidics. Top Curr Chem 304:295–321

    Article  Google Scholar 

  • Zheng WF, Xie YY, Zhang W, Wang D, Ma WS, Wang Z, Jiang XY (2012) Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study. Integr Biol UK 4(9):1102–1111

    Article  Google Scholar 

  • Zhou J, Niklason LE (2012) Microfluidic artificial “vessels” for dynamic mechanical stimulation of mesenchymal stem cells. Integr Biol UK 4(12):1487–1497

    Article  Google Scholar 

  • Zhu SY, Wei WG, Ding S (2011) Chemical strategies for stem cell biology and regenerative medicine. Annu Rev Biomed Eng 13:73–90

    Article  Google Scholar 

  • Ziolkowska K, Kwapiszewski R, Brzozka Z (2011) Microfluidic devices as tools for mimicking the in vivo environment. New J Chem 35(5):979–990

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council, Taiwan (Grant # NSC 102-2221-E-008-041), Cathay General Hospital (Grant # CGH-MR-10120) and National Central University–Cathay General Hospital joint research program (Grant # 101CGHNCU-A2) for financially supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Wen Tsao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YC., Tsao, CW., Chiang, MZ. et al. Microfluidic platform for human placenta-derived multipotent stem cells culture and applied for enhanced neuronal differentiation. Microfluid Nanofluid 18, 587–598 (2015). https://doi.org/10.1007/s10404-014-1455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1455-2

Keywords

Navigation