Skip to main content
Log in

Bulk acoustic wave piezoelectric micropumps with stationary flow rectifiers: a three-dimensional structural/fluid dynamic investigation

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Coupled structural and fluid flow analysis of bulk acoustic wave (BAW) piezoelectric micropumps is carried out for liquid (water) transport applications. The BAW micropump consists of trapezoidal-prism inlet/outlet elements; the pump chamber, a piezoelectric (PZT-5A) actuator and a thin structural layer (Pyrex glass) between the pump chamber and the actuator. Two-way coupling of forces and displacements between the solid and the liquid domains in the system is considered where actuator motion causes fluid flow. Flow contraction and expansion (through the trapezoidal-prism inlet and outlet sections, respectively) generate net fluid flow. The effect of the back-pressure, actuation frequency, inlet/outlet port angles and driving voltage on the structural–piezoelectric bi-layer membrane deformation and the resulting flow rate are investigated. For the compressible flow formulation considered, an isothermal equation of state for the working fluid is employed. Three-dimensional governing equations for the flow fields and the structural–piezoelectric bi-layer membrane motions are considered. The predicted flow rate increases with actuation frequency up to a critical value. The highest pumping rate is observed at this critical (resonant) actuation frequency due to the combined effects of mechanical, electrical and fluidic capacitances, inductances, and damping. Time-averaged flow rate starts to drop with increase of actuation frequency above the critical value. The present models can be utilized to optimize the design of microelectromechanical system-based micropumps on the basis of fluid flow and structural characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ashraf MW, Tayyaba S, Nisar A, Afzulpurkar N, Bodhale DW, Lomas T, Poyai A, Tuantranont A (2010) Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions. Cardiovasc Eng 10(3):91–108

    Article  Google Scholar 

  • Auld BA (1973) Acoustic fields and waves in solids. Wiley, New York

    Google Scholar 

  • Bodhale D, Nisar A, Afzulpurkar N (2010) Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluid Nanofluidics 8(3):373–392

    Article  Google Scholar 

  • Cui QF, Liu CL, Zha XF (2007) Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid Nanofluidics 3(4):377–390

    Article  Google Scholar 

  • Cui QF, Liu CL, Zha XF (2008) Simulation and optimization of a piezoelectric micropump for medical applications. Int J Adv Manuf Technol 36(5–6):516–524

    Article  Google Scholar 

  • Eriksson L-E (1985) Practical three-dimensional mesh generation using transfinite interpolation. SIAM J Sci Stat Comput 6(3):712

    Article  MATH  MathSciNet  Google Scholar 

  • ESI-US RD (2010) CFD-ACE+ modules manual V2010. Huntsville, AL

  • Fan B, Song G, Hussain F (2005) Simulation of a piezoelectrically actuated valveless micropump. Smart Mater Struct 14(2):400–405

    Article  Google Scholar 

  • Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83(2):647–704

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64

    Article  Google Scholar 

  • Liu RH, Yang JN, Pindera MZ, Athavale M, Grodzinski P (2002) Bubble-induced acoustic micromixing. Lab Chip 2(3):151–157

    Article  Google Scholar 

  • Liu RH, Lenigk R, Druyor-Sanchez RL, Yang JN, Grodzinski P (2003) Hybridization enhancement using cavitation microstreaming. Anal Chem 75(8):1911–1917

    Article  Google Scholar 

  • Meeker TR (1996) Publication and proposed revision of ANSI/IEEE standard 176-1987 “ANSI/IEEE standard on piezoelectricity”. IEEE Trans Ultrason Ferroelectr 43(5):717–718

    Article  Google Scholar 

  • Moroney RM, White RM, Howe RT (1991) Microtransport induced by ultrasonic Lamb waves. Appl Phys Lett 59(7):774

    Article  Google Scholar 

  • Morris CJ, Forster FK (2003) Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Syst 12(3):325–334

    Article  Google Scholar 

  • Mousoulis C, Ochoa M, Papageorgiou D, Ziaie B (2011) A skin-contact-actuated micropump for transdermal drug delivery. IEEE Trans Biomed Eng 58(5):1492–1498

    Article  Google Scholar 

  • Nguyen N-T, Huang X (2000) Numerical simulation of pulse-width-modulated micropumps with diffuser/nozzle elements. In: Laudon M, Romanowicz B (eds) International conference on modeling and simulation of microsystems—MSM 2000, San Diego, CA, pp 636–639

  • Nisar A, AftuIpurkar N, Mahaisavariya B, Tuantranont A (2008a) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B Chem 130(2):917–942

    Article  Google Scholar 

  • Nisar A, Afzulpurkar N, Tuantranont A, Mahaisavariya B (2008b) Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions. Cardiovasc Eng 8(4):203–218

    Article  Google Scholar 

  • Ochoa M, Mousoulis C, Ziaie B (2012) Polymeric microdevices for transdermal and subcutaneous drug delivery. Adv Drug Deliver Rev 64(14):1603–1616

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1995) A valve-less planar fluid pump with two pump chambers. Sens Actuators A Phys 47(1–3):549–556

    Article  Google Scholar 

  • Olsson A, Enoksson P, Stemme G, Stemme E (1997) Micromachined flat-walled valveless diffuser pumps. J Microelectromech Syst 6(2):161–166

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1999) A numerical design study of the valveless diffuser pump using a lumped-mass model. J Micromech Microeng 9(1):34–44

    Article  Google Scholar 

  • Sayar E, Farouk B (2011) Acoustically generated flows in microchannel flexural plate wave sensors: effects of compressibility. Sens Actuators A Phys 171(2):317–323

    Article  Google Scholar 

  • Sayar E, Farouk B (2012a) Electroosmotic augmentation in flexural plate wave micropumps. J Microelectromech Syst 22(2):372–385

    Article  Google Scholar 

  • Sayar E, Farouk B (2012b) Multifield analysis of a piezoelectric valveless micropump: effects of actuation frequency and electric potential. Smart Mater Struct 21(7):075002

    Article  Google Scholar 

  • Schreiber R, Keller HB (1983) Driven cavity flows by efficient numerical techniques. J Comput Phys 49(2):310–333

    Article  MATH  MathSciNet  Google Scholar 

  • Shin YS, Chung JW, Kladias N, Panides E, Domoto GA, Grigoropoulos CP (2005) Compressible flow of liquid in a standing wave tube. J Fluid Mech 536:321–345

    Article  MATH  Google Scholar 

  • Sollier E, Murray C, Maoddi P, Di Carlo D (2011) Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11(22):3752–3765

    Article  Google Scholar 

  • Tsui YY, Lu SL (2008) Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses. Sens Actuators A Phys 148(1):138–148

    Article  Google Scholar 

  • Ullmann A (1998) The piezoelectric valve-less pump—performance enhancement analysis. Sens Actuators A Phys 69(1):97–105

    Article  Google Scholar 

  • Van Doormaal JP, Raithby GD (1984) Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer Heat Transf 7:147–163

    MATH  Google Scholar 

  • Weinberg MS, Dube CE, Petrovich A, Zapata AM (2003) Fluid damping in resonant flexural plate wave device. J Microelectromech Syst 12:567–576

    Article  Google Scholar 

  • Zhou J, Hashmi A, Xu J, Sekhar PK (2014) An active micromixer based on reverse piezoelectricity effect. In: 225th ECS meeting, Orlando, FL, 2014. ECS Transactions (ECST), the electrochemical society: the society for solid-state and electrochemical science and technology, p 449

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakhtier Farouk.

Appendix: Material and working fluid properties

Appendix: Material and working fluid properties

Property data are given below for the piezoelectric material (PZT-5A), pump structural layer (Pyrex 7740 Borosilicate glass) and working fluid (water). The material data are provided following the conventional IEEE standards on piezoelectricity (Meeker 1996). The y- and z-axes in the piezoelectric material crystal frame (as shown on the expressions for piezoelectricity e, electrical permittivity ε and elasticity matrix c below) correspond to the z- and y-axes of the global frame (shown in Fig. 1a–c).

1.1 Piezoelectric material PZT-5A (Cui et al. 2007)

The density ρ s , piezoelectric stress constant e, permittivity ε and the elasticity matrix c of PZT-5A are given below:

Density \(\rho_{s} = 7700.0{\text{ kg}}/{\text{m}}^{3}\)

Piezoelectric stress constant \(e = \left[ {\begin{array}{*{20}c} 0 & 0 & { - 5.4} \\ 0 & 0 & { - 5.4} \\ 0 & 0 & {15.8} \\ 0 & {12.3} & 0 \\ {12.3} & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} } \right]{\text{ C}}/{\text{m}}^{2}\)

Permittivity \(\varepsilon = \left[ {\begin{array}{*{20}c} {8.107} & 0 & 0 \\ 0 & {8.107} & 0 \\ 0 & 0 & {7.346} \\ \end{array} } \right] \times 10^{ - 9} {\text{F}}/{\text{m}}\)

Elasticity constant \(c = \left[ {\begin{array}{*{20}c} {12.1} & {7.54} & {7.52} & 0 & 0 & 0 \\ {7.54} & {12.1} & {7.52} & 0 & 0 & 0 \\ {7.52} & {7.52} & {11.1} & 0 & 0 & 0 \\ 0 & 0 & 0 & {2.11} & 0 & 0 \\ 0 & 0 & 0 & 0 & {2.11} & 0 \\ 0 & 0 & 0 & 0 & 0 & {2.26} \\ \end{array} } \right] \times 10^{10} {\text{N}}/{\text{m}}^{2}\)

1.2 Glass (Sollier et al. 2011)

Pyrex 7740 borosilicate glass is considered to be isotropic. Material properties of the glass hence can be represented by just two independent quantities, i.e., Young’s Modulus and Poisson’s ratio. The relations between the elasticity constant, Young’s Modulus and Poisson’s ratio are summarized in (Fan et al. 2005). Material properties of Pyrex 7740 borosilicate glass: density\(\rho_{s} = 2230.0{\text{ kg}}/{\text{m}}^{3}\), Young’s modulus E = 62.75 × 109 Pa and Poisson’s ratio υ = 0.2.

1.3 Working fluid (water) (Cui et al. 2007)

Properties of the working fluid: density \(\rho_{f} = 997.0{\text{ kg}}/{\text{m}}^{3}\), dynamic viscosity \(\mu = 0.00104{\text{ kg}}/{\text{m}}\;{\text{s}}\) and speed of sound in working fluid \(c_{s} = 1480.0{\text{ m}}/{\text{s}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayar, E., Farouk, B. Bulk acoustic wave piezoelectric micropumps with stationary flow rectifiers: a three-dimensional structural/fluid dynamic investigation. Microfluid Nanofluid 18, 433–445 (2015). https://doi.org/10.1007/s10404-014-1441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1441-8

Keywords

Navigation