Skip to main content
Log in

Generation of tunable and pulsatile concentration gradients via microfluidic network

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios of the two injecting streams. The temporal/pulsatile concentration gradients are achieved by integrating on-chip pneumatic actuated valves controlled by the external signals. The temporal concentration gradients can also be tuned precisely by varying applied frequency and duty cycle of the trigger signal. It is believed that such microdevice will be potentially used for some application areas of producing stable chemical gradients as well as allowing fast, pulsatile gradient transformation in seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abhyankar VV, Lokuta MA et al (2006) Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6:389–393

    Article  Google Scholar 

  • Abhyankar VV, Toepke MW et al (2008) A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab Chip 8(9):1507–1515

    Article  Google Scholar 

  • Ahmed D, Chan CY et al (2013) Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. Lab Chip 13(3):328–331

    Article  Google Scholar 

  • Ainla A, Jansson ET et al (2010) A microfluidic pipette for single-cell pharmacology. Anal Chem 82(11):4529–4536

    Article  Google Scholar 

  • Atencia J, Morrow J et al (2009) The microfluidic palette: a diffusive gradient generator with spatio-temporal control. Lab Chip 9:2707–2714

    Article  Google Scholar 

  • Atencia J, Cooksey GA et al (2012) A robust diffusion-based gradient generator for dynamic cell assays. Lab Chip 12(2):309–316

    Article  Google Scholar 

  • Beta C, Wyatt D et al (2007) Flow photolysis for spatiotemporal stimulation of single cells. Anal Chem 79(10):3940–3944

    Article  Google Scholar 

  • Boyden S (1961) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    Article  Google Scholar 

  • Bruus H (2008) Theoretical microfluidics. Oxford University Press, Oxford

    Google Scholar 

  • Carlo DD (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

    Article  Google Scholar 

  • Chen CY, Wo AM et al (2012) A microfluidic concentration generator for dose-response assays on ion channel pharmacology. Lab Chip 12(4):794–801

    Article  Google Scholar 

  • Chung BG, Flanagan LA et al (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5(4):401–406

    Article  Google Scholar 

  • Cimetta E, Cannizzaro C et al (2010) Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling. Lab Chip 10(23):3277–3283

    Article  Google Scholar 

  • Dertinger SKW, Chiu DT et al (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73(6):1240–1246

    Article  Google Scholar 

  • Estes MD, Hurth C et al (2013) A tuneable array of unique steady-state microfluidic gradients. Phys Chem Chem Phys 15(31):12805–12814

    Article  Google Scholar 

  • Haessler U, Pisano M et al (2011) Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. PNAS 108(14):5614–5619

    Article  Google Scholar 

  • Holden MA, Kumar S et al (2003) Generating fixed concentration arrays in a microfluidic device. Sens Actuators B Chem 92(1–2):199–207

    Article  Google Scholar 

  • Horrocks MH, Rajah L et al (2013) Single-molecule measurements of transient biomolecular complexes through microfluidic dilution. Anal Chem 85(14):6855–6859

    Article  Google Scholar 

  • Hung PJ, Lee PJ et al (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol and Bioeng 89(1):1–8

    Article  Google Scholar 

  • Irimia D, Geba DA et al (2006a) Universal microfluidic gradient generator. Anal Chem 78(10):3472–3477

    Article  Google Scholar 

  • Irimia D, Liu SY et al (2006b) Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip 6(2):191–198

    Article  Google Scholar 

  • Irimia D, Charras G et al (2007) Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7(12):1783–1790

    Article  Google Scholar 

  • Jang YH, Hancock MJ et al (2011) An integrated microfluidic device for two-dimensional combinatorial dilution. Lab Chip 11(19):3277–3286

    Article  Google Scholar 

  • Jeon NL, Dertinger SKW et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16(22):8311–8316

    Article  Google Scholar 

  • Jeon NL, Baskaran H et al (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830

    Article  Google Scholar 

  • Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8(1):34–57

    Article  Google Scholar 

  • Kim C, Lee K et al (2008) A serial dilution microfluidic device using a ladder network generating logarithmic or linear concentrations. Lab Chip 8(3):473–479

    Article  Google Scholar 

  • Kim D, Lokuta MA et al (2009) Selective and tunable gradient device for cell culture and chemotaxis study. Lab Chip 9(12):1797–1800

    Article  Google Scholar 

  • Kress H, Park JG et al (2009) Cell stimulation with optically manipulated microsources. Nat Methods 6(12):905–909

    Article  Google Scholar 

  • Kuczenski B, Ruder WC et al (2009) Probing cellular dynamics with a chemical signal generator. PLoS ONE 4(3):e4847

    Article  Google Scholar 

  • Lam EW, Cooksey GA et al (2006) Microfluidic circuits with tunable flow resistances. Appl Phys Lett 89(16):164105

    Article  Google Scholar 

  • Lee K, Kim C et al (2010) Microfluidic network-based combinatorial dilution device for high throughput screening and optimization. Microfluid Nanofluid 8:677–685

    Article  Google Scholar 

  • Lee K, Kim C et al (2011) Microfluidic concentration-on-demand combinatorial dilutions. Microfluid Nanofluid 11:75–86

    Article  Google Scholar 

  • Li XJ, Chen YC et al (2011) A simple and fast microfluidic approach of same-single-cell analysis (SASCA) for the study of multidrug resistance modulation in cancer cells. Lab Chip 11(7):1378–1384

    Article  Google Scholar 

  • Lin F, Butcher EC (2006) T cell chemotaxis in a simple microfluidic device. Lab Chip 6(11):1462–1469

    Article  Google Scholar 

  • Martin P (1997) Wound healing–aiming for perfect skin regeneration. Science 276(75):75–81

    Article  Google Scholar 

  • Melin J, Quake SR (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu Rev Biophys Biomol Struct 36:213–231

    Article  Google Scholar 

  • Ming GL, Wong ST et al (2002) Adaptation in the chemotactic guidance of nerve growth cones. Nature 417(6887):411–418

    Article  Google Scholar 

  • Morel M, Galas JC et al (2012) Concentration landscape generators for shear free dynamic chemical stimulation. Lab Chip 12(7):1340–1346

    Article  Google Scholar 

  • Nagai M, Ryu S et al (2010) Chemical control of Vorticella bioactuator using microfluidics. Lab Chip 10(12):1574–1578

    Article  Google Scholar 

  • Nandagopal S, Wu D et al (2011) Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields. PLoS ONE 6(3):e18183

    Article  Google Scholar 

  • Oh KW, Lee K et al (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3):515–545

    Article  MathSciNet  Google Scholar 

  • Park ES, DiFeo MA et al (2013) Sequentially pulsed fluid delivery to establish soluble gradients within a scalable microfluidic chamber array. Biomicrofluidics 7:011804

    Article  Google Scholar 

  • Rosa P, Tenreiro S et al (2012) High-throughput study of alpha-synuclein expression in yeast using microfluidics for control of local cellular microenvironment. Biomicrofluidics 6(1):014109

    Article  Google Scholar 

  • Saadi W, Rhee SW et al (2007) Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 9:627–635

    Article  Google Scholar 

  • Toetsch S, Olwell P et al (2009) The evolution of chemotaxis assays from static models to physiologically relevant platforms. Integr Biol 1(2):170–181

    Article  Google Scholar 

  • Toh AGG, Wang ZP et al (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16:1–18

    Article  Google Scholar 

  • Vandersarl JJ, Xu AM et al (2011) Rapid spatial and temporal controlled signal delivery over large cell culture areas. Lab Chip 11(18):3057–3063

    Article  Google Scholar 

  • Wang SJ, Saadi W et al (2004) Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp Cell Res 300(1):180–189

    Article  Google Scholar 

  • Wang CJ, Li X et al (2008) A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab Chip 8(2):227–237

    Article  Google Scholar 

  • Yang CG, Wu YF et al (2011) A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay. Lab Chip 11(19):3305–3312

    Article  Google Scholar 

  • Zicha D, Dunn GA et al (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99(4):769–775

    Google Scholar 

  • Zigmond SH, Hirsch JG (1973) Leukocyte locomotion and chemotaxis. J Exp Med 137(2):387–410

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Andrew W. O. Poon’s research group, of Department of Electronic and Computer Engineering in HKUST, for their assistance in COMSOL Multiphysics simulations. This publication is based on work partially supported by Award No. SA-C0040/UK-C0016, made by King Abdullah University of Science and Technology (KAUST), Hong Kong RGC Grants HKUST 604710 and 605411, and National Natural Science Foundation of China (Grant No. 11290165). The work is also partially supported by the Nanoscience and Nanotechnology Program at HKUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijia Wen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 299 kb)

Supplementary material 2 (AVI 3012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Xu, W., Wang, C. et al. Generation of tunable and pulsatile concentration gradients via microfluidic network. Microfluid Nanofluid 18, 175–184 (2015). https://doi.org/10.1007/s10404-014-1432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1432-9

Keywords

Navigation