Skip to main content
Log in

Portable bead-based fluorescence detection system for multiplex nucleic acid testing: a case study with Bacillus anthracis

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper describes the design, functioning and use of a portable detection platform for multiplex nucleic acid testing. The system features a bead-supported DNA hybridization assay performed inside a microfluidic cartridge. Polystyrene particles modified with DNA capture probes are confined in the detection area and exposed to a solution of fluorescently labeled target DNA strands. The cartridge, fabricated from inexpensive thermoplastic polymers, allows for conducting up to eight assays in parallel. The detection instrument is equipped with a pneumatic module and a manifold lid serving as an interface to mediate fluid displacement on the cartridge. The fluorescence signal deriving from each assay is recorded by a semi-confocal fluorescence reader embedded in the detection platform. The compact design of the instrument and its level of integration make it possible to obtain an analytical result in less than 15 min, while only few manual steps need to be performed in between. A proof-of-concept demonstration involving Cy3-labeled, PCR-amplified genomic DNA confirms the ability to detect Bacillus anthracis in a multiplexed single-assay format using lef and capC genes. Limits of quantification are on the order of 1 × 109 copies/μL for lef targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali MF, Kirby R, Goodey AP, Rodriguez MD, Ellington AD, Neikirk DP, McDevitt JT (2003) DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays. Anal Chem 75:4732–4739

    Article  Google Scholar 

  • Boissinot K, Huletsky A, Peytavi R, Turcotte S, Veillette V, Boissinot M, Picard FJ, Martel EA, Bergeron MG (2007) Rapid exonuclease digestion of PCR-amplified targets for improved microarray hybridization. Clin Chem 53:2020–2023

    Article  Google Scholar 

  • Boudreau D, Gravel J-F, Voisin B, Le Drogoff B, Veres T (2011) Method and apparatus for detecting fluorescence emitted by particle-bound fluorophores confined by particle traps. US 2011(0226962):A1

    Google Scholar 

  • Bragg TS, Robertson DL (1989) Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis. Gene 81:45–54

    Article  Google Scholar 

  • Brassard D, Clime L, Li K, Geissler M, Miville-Godin C, Roy E, Veres T (2011) 3D microfluidic device for biological probe immobilization. Lab Chip 11:4099–4107

    Article  Google Scholar 

  • Brouard D, Viger ML, Bracamonte AG, Boudreau D (2011) Label-free biosensing based on multilayer fluorescent nanocomposites and a cationic polymeric transducer. ACS Nano 5:1888–1896

    Article  Google Scholar 

  • Carletti E, Guerra E, Alberti S (2006) The forgotten variables of DNA array hybridization. Trends Biotechnol 24:443–448

    Article  Google Scholar 

  • de Jong EP, Lucy CA (2005) Spectral filtering of light-emitting diodes for fluorescence detection. Anal Chim Acta 546:37–45

    Article  Google Scholar 

  • de Jong EP, Lucy CA (2006) Low-picomolar limits of detection using high-power light-emitting diodes for fluorescence. Analyst 131:664–669

    Article  Google Scholar 

  • Dubus S, Gravel J-F, Le Drogoff B, Nobert P, Veres T, Boudreau D (2006) PCR-free DNA detection using a magnetic bead-supported polymeric transducer and microelectromagnetic traps. Anal Chem 78:4457–4464

    Article  Google Scholar 

  • Emanuel P, Roos JW, Niyogi K (2008) Sampling for biological agents in the environment. ASM Press, Washington, DC

  • Geissler M, Roy E, Diaz-Quijada GA, Galas J-C, Veres T (2009) Microfluidic patterning of miniaturized DNA arrays on plastic substrates. ACS Appl Mater Interfaces 1:1387–1395

    Article  Google Scholar 

  • Geissler M, Voisin B, Veres T (2011) Air stream-mediated vortex agitation of microlitre entities on a fluidic chip. Lab Chip 11:1717–1720

    Article  Google Scholar 

  • Geissler M, Isabel S, Voisin B, Fauvel C, Boissinot M, Bergeron MG, Veres T (2012) Modular ultrasonic lysis system for rapid nucleic acid extraction and sample transfer of Bacillus spores. J Bioterr Biodef 3:119-1–119-6

    Google Scholar 

  • Green BD, Battisti L, Koehler TM, Thorne CB, Ivins BE (1985) Demonstration of a capsule plasmid in Bacillus anthracis. Infect Immun 49:291–297

    Google Scholar 

  • Ho H-A, Boissinot M, Bergeron MG, Corbeil G, Doré K, Boudreau D, Leclerc M (2002) Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew Chem Int Ed 41:1548–1551

    Article  Google Scholar 

  • Holden MA, Kumar S, Beskok A, Cremer PS (2003) Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow. J Micromech Microeng 13:412–418

    Article  Google Scholar 

  • Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Friedlander AM, Hauer J, McDade J, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Tonat K, Working Group on Civilian Biodefense (1999) Anthrax as a biological weapon: Medical and public health management. J Am Med Assoc 281:1735–1745

    Google Scholar 

  • Isabel S, Boissinot M, Charlebois I, Fauvel CM, Shi L-E, Lévesque J-C, Paquin AT, Bastien M, Stewart G, Leblanc E, Sato S, Bergeron MG (2012) Rapid filtration separation-based sample preparation method for Bacillus spores in powdery and environmental matrices. Appl Environ Microbiol 78:1505–1512

    Article  Google Scholar 

  • Jiang GF, Harrison DJ (2000) mRNA isolation in a microfluidic device for eventual integration of cDNA library construction. Analyst 125:2176–2179

    Article  Google Scholar 

  • Kim J, Heo J, Crooks RM (2006) Hybridization of DNA to bead-immobilized probes confined within a microfluidic channel. Langmuir 22:10130–10134

    Article  Google Scholar 

  • Lim DV, Simpson JM, Kearns EA, Kramer MF (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18:583–607

    Article  Google Scholar 

  • Luna VA, King DS, Peak KK, Reeves F, Heberlein-Larson L, Veguilla W, Heller L, Duncan KE, Cannons AC, Amuso P, Cattani J (2006) Bacillus anthracis virulent plasmid pX02 genes found in large plasmids of two other Bacillus species. J Clin Microbiol 44:2367–2377

    Article  Google Scholar 

  • Madou M, Zoval J, Jia G, Kido H (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628

    Article  Google Scholar 

  • Makino S-I, Uchida I, Terakado N, Sasakawa C, Yoshikawa M (1989) Molecular characterization and molecular analysis of the cap region, which is essential for encapsulation of Bacillus anthracis. J Bacteriol 171:722–730

    Google Scholar 

  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182

    Article  Google Scholar 

  • Meltzer RH, Krogmeier JR, Kwok LW, Allen R, Crane B, Griffis JW, Knaian L, Kojanian N, Malkin G, Nahas MK, Papkov V, Shaikh S, Vyavahare K, Zhong Q, Zhou Y, Larson JW, Gilmanshin R (2011) A lab-on-chip for biothreat detection using single-molecule DNA mapping. Lab Chip 11:863–873

    Article  Google Scholar 

  • Neethirajan S, Kobayashi I, Nakajima M, Wu D, Nandagopal S, Lin F (2011) Microfluidics for food, agriculture and biosystems industries. Lab Chip 11:1574–1586

    Article  Google Scholar 

  • Novak L, Neuzil P, Pipper J, Zhang Y, Lee S (2007) An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip 7:27–29

    Article  Google Scholar 

  • Parham NJ, Picard FJ, Peytavi R, Gagnon M, Seyrig G, Gagné P-A, Boissinot M, Bergeron MG (2007) Specific magnetic bead-based capture of genomic DNA from clinical samples: application to the detection of group B streptococci in vaginal/anal swabs. Clin Chem 53:1570–1576

    Article  Google Scholar 

  • Persing DH, Tenover FC (2011) Molecular microbiology: diagnostic principles and practice (2nd edn). ASM Press, Washington, DC

  • Picard FJ, Gagnon M, Bernier MR, Parham NJ, Bastien M, Boissinot M, Peytavi R, Bergeron MG (2009) Internal control for nucleic acid testing based on the use of purified Bacillus atrophaeus subsp. globigii spores. J Clin Microbiol 47:751–757

    Article  Google Scholar 

  • Robertson DL, Tippetts MT, Leppla SH (1988) Nucleotide sequence of the Bacillus anthracis edema factor gene (cya): a calmodulin-dependent adenylate cyclase. Gene 73:363–371

    Article  Google Scholar 

  • Roy E, Geissler M, Galas J-C, Veres T (2011) Prototyping of microfluidic systems using a commercial thermoplastic elastomer. Microfluid Nanofluid 11:235–244

    Article  Google Scholar 

  • Schonbrun E, Abate AR, Steinvurzel PE, Weiz DA, Crozier KB (2010) High-throughput fluorescence detection using an integrated zone-plate array. Lab Chip 10:852–856

    Article  Google Scholar 

  • Seong GH, Crooks RM (2002) Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. J Am Chem Soc 124:13360–13361

    Article  Google Scholar 

  • Shin K-S, Lee SW, Han K-C, Kim SK, Yang EK, Park JH, Ju B-K, Kang JY, Kim TS (2007) Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip. Biosens Bioelectron 22:2261–2267

    Article  Google Scholar 

  • Uchida I, Sekizaki T, Hashimoto K, Terakado N (1985) Association of the encapsulation of Bacillus anthracis with a 60 Megadalton plasmid. J Gen Microbiol 131:363–367

    Google Scholar 

  • Uchida I, Hashimoto K, Terakado N (1986) Virulence and immunogenicity in experimental animals of Bacillus anthracis strains harbouring or lacking 110 MDa and 60 MDa plasmids. J Gen Microbiol 132:557–559

    Google Scholar 

  • Wen J, Yang X, Wang K, Tan W, Zuo X, Zhang H (2008) Telomerase catalyzed fluorescent probes for sensitive protein profiling based on one-dimensional microfluidic beads array. Biosens Bioelectron 23:1788–1792

    Article  Google Scholar 

  • Zaytseva NV, Goral VN, Montagna RA, Baeumner AJ (2005) Development of a microfluidic biosensor module for pathogen detection. Lab Chip 5:805–811

    Article  Google Scholar 

  • Zhang H, Yang X, Wang K, Tan W, Zhou L, Zuo X, Wen J, Chen Y (2007) Detection of single-base mutations using 1-D microfluidic beads array. Electrophoresis 28:4668–4678

    Article  Google Scholar 

  • Zhang H, Yang X, Wang K, Tan W, Li H, Zuo X, Wen J (2008) On-chip oligonucleotide ligation assay using one-dimensional microfluidic beads array for the detection of low-abundant DNA point mutations. Biosens Bioelectron 23:945–951

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Canada’s Chemical, Biological, Radiological, and Nuclear Research and Technology Initiative (CRTI) under the program Portable Biological Agent Detection System (06-0187TD). We would like to thank our colleagues and collaborators for useful discussions and technical assistance: Kien-Mun Lau, Maxence Mounier, François Normandin, Boris Le Drogoff, Jean-Guy Allard, Emmanuel Roy, and Hélène Roberge from CNRC Boucherville; Arnold Kell, Chantal Paquet, and Benoît Simard from the Steacie Institute for Molecular Sciences (CNRC, Ottawa, ON); Thompson Tang, William Lee, and Doug Bader from Defense Research and Development Canada (Suffield, Medicine Hat, AB); Ian Summerell from the Royal Canadian Mounted Police (Orleans, ON), Louis Bryden and Michael Mulvey from the Public Health Agency of Canada (Winnipeg, MB); and David Béliveau-Viel, Sébastien Dubus, Even Lemieux, and Prof. Mario Leclerc from Université Laval. We are grateful to Caroline Vachon and Michel M. Dumoulin from CNRC Boucherville for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teodor Veres or Denis Boudreau.

Additional information

Jean-François Gravel and Matthias Geissler have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gravel, JF., Geissler, M., Chapdelaine, S. et al. Portable bead-based fluorescence detection system for multiplex nucleic acid testing: a case study with Bacillus anthracis . Microfluid Nanofluid 16, 1075–1087 (2014). https://doi.org/10.1007/s10404-013-1273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1273-y

Keywords

Navigation