Skip to main content
Log in

Numerical simulation of flow and heat transfer in radially rotating microchannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Investigation of fluid flow and heat transfer in rotating microchannels is important for centrifugal microfluidics, which has emerged as an advanced technique in biomedical applications and chemical separations. The centrifugal force and Coriolis force, arising as a consequence of the microchannel rotation, change the flow pattern significantly from the symmetric profile of a non-rotating channel. Successful design of microfluidic devices in centrifugal microfluidics depends on effectively regulating these forces in rotating microchannels. In this work, we have numerically investigated the flow and heat transfer in rotating rectangular microchannel with continuum assumption. A pressure-based finite-volume technique with a staggered grid was applied to solve the steady incompressible Navier–Stokes and energy equations. It was observed that the effect of Coriolis force was determined by the value of the non-dimensional rotational Reynolds number (Re ω ). By comparing the root mean square deviation of the axial velocity profiles with the approximate analytical results of purely centrifugal flow for different aspect ratios (AR = width/height), a critical rotational Reynolds number (Re ω,cr) was computed. Above this value of (Re ω,cr), the effect of secondary flow becomes dominant. For aspect ratios of 0.25, 0.5, 1.0, 2.0, 4.0 and 9.09, this critical rotational Reynolds number (Re ω,cr) was found to be 14.0, 5.5, 3.8, 4.7, 6.5 and 10.0, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

a :

Width of the microchannel (m)

AR:

Channel aspect ratio \( \left( { {=} \frac{a}{b}} \right) \)

b :

Height of the microchannel (m)

C p :

Specific heat at constant pressure (J/kg K)

D h :

Hydraulic diameter of microchannel (m)

d r :

Radial distance of inlet from the disk center (m)

f app :

Apparent friction factor (m/s)

f c :

Coriolis force (=2ωw)

f ω :

Centrifugal force ( 2 d r)

G :

Modified axial pressure gradient

G * :

Reduced axial pressure gradient

h :

Convective heat transfer coefficient (W/m2 K)

k:

Thermal conductivity (W/m K)

Kn :

Knudsen number

L :

Length of the microchannel (m)

Nu :

Nusselt number \( \left( { {=} \frac{{hD_{\text{h}} }}{k}} \right) \)

p :

Pressure (Pa)

Ra :

Rayleigh number

Re ω :

Rotational Reynolds number \( \left( { {=} \frac{{\omega D_{\text{h}}^{2} \rho }}{\mu }} \right) \)

Re ω,cr :

Critical rotational Reynolds number

Re :

Reynolds number \( \left( { {=} \frac{{\rho W_{\text{avg}} D_{\text{h}} }}{\mu }} \right) \)

Ro :

Rossby number \( \left( { {=} \frac{{Re_{\omega } }}{Re}} \right) \)

RPM:

Revolution per minute

S j :

Source term in j-direction

T :

Temperature (°C)

u, v, w :

Velocities in x, y and z directions (m/s)

x i :

Co-ordinates in i-direction (x, y, z for i = 1, 2, 3)

β :

Ratio of the Coriolis force to the centrifugal force

\( \lambda ,\Gamma \) :

Eigen values

ω :

Angular velocity (rad/s)

μ :

Dynamic viscosity of fluid (Pa s)

ρ :

Fluid density (kg/m3)

v :

Kinematic viscosity (m2/s)

app :

Apparent

avg :

Average

cr :

Critical

i,j,k :

Array indices for tensor notation

in :

Inlet

max :

Maximum

out :

Outlet

w :

Wall

References

  • Amasia M, Madou M (2010) Large-volume centrifugal microfluidic device for blood plasma separation. Bioanalysis 2(10):1701–1710

    Article  Google Scholar 

  • Brenner T, Glatzel T, Zengerle R, Ducrée J (2004) Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5(2):146–150

    Article  Google Scholar 

  • Chakraborty D, Chakraborty S (2010) Controlled microbubble generation on a compact disk. Appl Phys Lett 97(23):234103

    Article  Google Scholar 

  • Chakraborty D, Madou M, Chakraborty S (2011) Anomalous mixing behaviour in rotationally actuated microfluidic devices. Lab Chip 11(17):2823–2826

    Article  Google Scholar 

  • Chen JM, Huang PC, Lin MG (2008) Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluid Nanofluid 4(5):427–437

    Article  Google Scholar 

  • Ducrée J, Brenner T, Haeberle S, Glatzel T, Zengerle R (2006a) Multilamination of flows in planar networks of rotating microchannels. Microfluid Nanofluid 2(1):78–84

    Article  Google Scholar 

  • Ducrée J, Haeberle S, Brenner T, Glatzel T, Zengerle R (2006b) Patterning of flow and mixing in rotating radial microchannels. Microfluid Nanofluid 2(2):97–105

    Article  Google Scholar 

  • Ducrée J, Haeberle S, Lutz S, Pausch S, von Stetten F, Zengerle R (2007) The centrifugal microfluidic Bio-Disk platform. J Micromechanics Microengineering 17:S103

    Article  Google Scholar 

  • Duffy DC, Gillis HL, Lin J, Sheppard NF Jr, Kellogg GJ (1999) Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 71(20):4669–4678

    Article  Google Scholar 

  • Garimella SV, Sobhan C (2003) Transport in microchannels—a critical review. Ann Rev Heat Transf 13:1–50

    Article  Google Scholar 

  • Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park JM, Kim J, Kim H, Madou M, Cho YK (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773

    Article  Google Scholar 

  • Gorkin R, Soroori S, Southard W, Clime L, Veres T, Kido H, Kulinsky L, Madou M (2012) Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluid Nanofluid 12(1):345–354

    Google Scholar 

  • Grumann M, Geipel A, Riegger L, Zengerle R, Ducree J (2005) Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5(5):560–565

    Article  Google Scholar 

  • Haeberle S, Brenner T, Zengerle R, Ducrée J (2006) Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 6(6):776–781

    Article  Google Scholar 

  • Haeberle S, Zengerle R, Ducrée J (2007) Centrifugal generation and manipulation of droplet emulsions. Microfluid Nanofluid 3(1):65–75

    Article  Google Scholar 

  • Hsieh SS, Hong YJ, Jeng SR (1994) Three-dimensional laminar forced convection in a rotating square duct with a rib on the leading wall. Int J Heat Mass Transf 37(15):2273–2285

    Article  MATH  Google Scholar 

  • Hwang G, Jen T (1990) Convective heat transfer in rotating isothermal ducts. Int J Heat Mass Transf 33(9):1817–1828

    Article  Google Scholar 

  • Johnson RD, Badr IHA, Barrett G, Lai S, Lu Y, Madou MJ, Bachas LG (2001) Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics. Anal Chem 73(16):3940–3946

    Article  Google Scholar 

  • Kawano K, Sekimura M, Minakami K, Iwasaki H, Ishizuka M (2001) Development of micro channel heat exchanging. JSME Int J Ser B 44(4):592–598

    Article  Google Scholar 

  • Kim J, Kido H, Rangel RH, Madou MJ (2008) Passive flow switching valves on a centrifugal microfluidic platform. Sens Actuators B Chem 128(2):613–621

    Article  Google Scholar 

  • Kong MCR, Salin ED (2011) Pneumatic flow switching on centrifugal microfluidic platforms in motion. Anal Chem 83(3):1148–1151

    Article  Google Scholar 

  • Lee PS, Garimella SV, Liu D (2005) Investigation of heat transfer in rectangular microchannels. Int J Heat Mass Trans 48(9):1688–1704

    Article  Google Scholar 

  • Lei U, Hsu C (1990) Flow through rotating straight pipes. Phys Fluids A 2:63

    Article  Google Scholar 

  • Liu M, Zhang J, Liu Y, Lau W, Yang J (2008) Modeling of flow burst, flow timing in Lab-on-a-CD systems and its application in digital chemical analysis. Chem Eng Technol 31(9):1328–1335

    Article  Google Scholar 

  • Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628

    Article  Google Scholar 

  • Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182

    Article  Google Scholar 

  • Mark D, Weber P, Lutz S, Focke M, Zengerle R, von Stetten F (2011) Aliquoting on the centrifugal microfluidic platform based on centrifugo-pneumatic valves. Microfluid Nanofluid 10(6):1279–1288

    Article  Google Scholar 

  • Mlcak JD, Anand NK, Rightley MJ (2008) Three-dimensional laminar flow and heat transfer in a parallel array of microchannels etched on a substrate. Int J Heat Mass Transf 51(21–22):5182–5191

    Article  MATH  Google Scholar 

  • Moore JL, McCuiston A, Mittendorf I, Ottway R, Johnson RD (2011) Behavior of capillary valves in centrifugal microfluidic devices prepared by three-dimensional printing. Microfluid Nanofluid 10(4):877–888

    Article  Google Scholar 

  • Morris WD (1981) Heat transfer and fluid flow in rotating coolant channels. Research Studies Press

  • Noroozi Z, Kido H, Micic M, Pan H, Bartolome C, Princevac M, Zoval J, Madou M (2009) Reciprocating flow-based centrifugal microfluidics mixer. Rev Sci Instrum 80(7):075102–075108

    Article  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Pub

  • Patankar S, Liu C, Sparrow E (1977) Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area. J Heat Transf 99:180

    Article  Google Scholar 

  • Qu W, Mudawar I (2002) Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transf 45(12):2549–2565

    Article  Google Scholar 

  • Roy P, Anand NK, Banerjee D (2011) A numerical study of unsteady laminar flow and heat transfer through an array of rotating rectangular microchannels. In: ASME 2011 International mechanical engineering congress and exposition, Denver, CO, November 11–17, 2011

  • Shah R, London A (1974) Thermal boundary conditions and some solutions for laminar duct flow forced convection. J Heat Transf 96:159

    Article  Google Scholar 

  • Siegrist J, Amasia M, Singh N, Banerjee D, Madou M (2010a) Numerical modeling and experimental validation of uniform microchamber filling in centrifugal microfluidics. Lab Chip 10(7):876–886

    Article  Google Scholar 

  • Siegrist J, Gorkin R, Clime L, Roy E, Peytavi R, Kido H, Bergeron M, Veres T, Madou M (2010b) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluid 9(1):55–63

    Article  Google Scholar 

  • Tien-Chien J, Lavine AS, Guang-Jyh H (1992) Simultaneously developing laminar convection in rotating isothermal square channels. Int J Heat Mass Transf 35(1):239–254

    Article  MATH  Google Scholar 

  • Zeng J, Banerjee D, Deshpande M, Gilbert JR, Duffy DC, Kellogg GJ (2000) Design analyses of capillary burst valves in centrifugal microfluidics. In: μTAS2000 symposium, Enschede, the Netherlands, May 14–18, 2000

  • Zhang J, Liu Y, Zhang J, Yang J (2009) Study of force-dependent and time-dependent transition of secondary flow in a rotating straight channel by the lattice Boltzmann method. Phys A 388(4):288–294

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Texas A&M Supercomputing Facility (http://sc.tamu.edu) for providing computing resources useful in conducting the research reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Anand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, P., Anand, N.K. & Banerjee, D. Numerical simulation of flow and heat transfer in radially rotating microchannels. Microfluid Nanofluid 15, 397–413 (2013). https://doi.org/10.1007/s10404-013-1159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1159-z

Keywords

Navigation