Skip to main content
Log in

Centrifugal generation and manipulation of droplet emulsions

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This work for the first time describes a centrifugal technique for the production and manipulation of highly monodisperse water droplets (CV of droplet diameter below 2%) immersed in a continuous flow of immiscible oil. Within a given working range, droplet volumes (5–22 nL) and their mutual spacing is governed by the channel geometry and the frequency of rotation. Different regimes of liquid–liquid flows are presented. We also demonstrate capabilities like droplet splitting and sedimentation as well as the production of two colored droplets, thus setting the stage for a novel centrifugal platform for multiphase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366

    Article  Google Scholar 

  • Brenner T, Glatzel T, Zengerle R, Ducrée J (2005) Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5(2):146–150

    Article  Google Scholar 

  • Cramer C, Fischer P, Windhab EJ (2004) Drop formation in a co-flowing ambient fluid. Chem Eng Sci 59(15):3045–3058

    Article  Google Scholar 

  • Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21(6):2113–2116

    Article  Google Scholar 

  • Ducrée J, Schlosser HP, Haeberle S, Glatzel T, Brenner T, Zengerle R (2004) Centrifugal platform for high-throughput reactive micromixing. In: Laurell T, Nilsson J, Jensen KF, Harrison DJ, Kutter JP (eds) Proceedings of μTAS 2004, 8th International Conference on Miniaturized Systems for Chemistry and Life Sciences, September 26–30, Malmö, Sweden, pp 554–556

  • Ducrée J, Haeberle S, Brenner T, Glatzel T, Zengerle R (2005) Patterning of flow and mixing in rotating radial microchannels. Microfluid Nanofluid 2(2):97–105

    Article  Google Scholar 

  • Ducrée J, Brenner T, Haeberle S, Glatzel T, Zengerle R (2006) Multilamination of flows in planar networks of rotating microchannels. Microfluid Nanofluid 2(1):78–84

    Article  Google Scholar 

  • Ganan-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87(27):274501

    Google Scholar 

  • Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85(13):2649–2651

    Article  Google Scholar 

  • Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94(16):164501

    Google Scholar 

  • Geschke O, Klank H, Telleman P (2004) Microsystem engineering of lab-on-a-chip devices. Wiley, Weinheim

    Google Scholar 

  • Grumann M, Brenner T, Beer C, Zengerle R, Ducrée J (2005) Visualization of flow patterning in high-speed centrifugal microfluidics. Rev Sci Instrum 76(2):025101

    Google Scholar 

  • Gunther A, Jhunjhunwala M, Thalmann M, Schmidt MA, Jensen KF (2005) Micromixing of miscible liquids in segmented gas–liquid flow. Langmuir 21(4):1547–1555

    Article  Google Scholar 

  • Haeberle S, Brenner T, Schlosser HP, Zengerle R, Ducrée J (2005a) Centrifugal micromixer. Chem Eng Technol 28(5):613–616

    Article  Google Scholar 

  • Haeberle S, Zengerle R, Ducrée J (2005b) Online process control for centrifugal microfluidics. In: Proceedings of Transducers 05, the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, June 5–9, Seoul, Korea, pp 1525–1528

  • Haeberle S, Schlosser HP, Zengerle R, Ducrée J (2005c) A centrifuge-based microreactor. In: IMRET 8, 8th International Conference on Microreaction Technology, April 10–14, Atlanta, USA, p TK-129f

  • Haeberle S, Zengerle R, Ducrée J (2005d) Monodisperse droplet trains and segmented flow for centrifugal microfluidics. In: Proceedings 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2005), Boston, USA, pp 635–637

  • Haeberle S, Schmitt N, Zengerle R, Ducrée J (2006) A centrifugo-magnetically actuated gas micropump. In: Proceedings of 19th International Conference on Microelectro Mechanical Systems (MEMS 2006), Istanbul, Turkey, pp 166–169

  • Hessel V, Lowe H, Stange T (2002) Microchemical processing at IMM—from pioneering work to customer-specific services. Lab Chip 2(1):14N–21N

    Article  Google Scholar 

  • Joanicot M, Ajdari A (2005) Droplet control for microfluidics. Science 309(5736):887–888

    Article  Google Scholar 

  • Kim DS, Kwon TH (2006) Modeling, analysis and design of centrifugal force-driven transient filling flow into a circular microchannel. Microfluid Nanofluid 2(2):125–140

    Article  Google Scholar 

  • Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):054503

    Google Scholar 

  • Lord Rayleigh FRS (1878) On the instability of jets. Proc Lond Math Soc 10(4):4–13

    Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2004a) Novel microreactors for functional polymer beads. Chem Eng J 101(1–3):23–29

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2004b) Controlled production of functional polymeric microspheres using multi-phase microfluidics. In: Laurell T, Nilsson J, Jensen KF, Harrison DJ, Kutter JP (eds) Proceedings of μTAS 2004, 8th International Conference on Miniaturized Systems for Chemistry and Life Sciences, September 26–30, Malmö, Sweden, pp 408–410

  • Roach LS, Song H, Ismagilov RF (2005) Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal Chem 77(3):785–796

    Article  Google Scholar 

  • Shestopalov IA, Tice JD, Ismagilov RF (2004) Multi-step chemical reactions performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4:316–321

    Article  Google Scholar 

  • Song H, Bringer MR, Tice JD, Gerdts CJ, Ismagilov RF (2003) Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl Phys Lett 83(22):4664–4666

    Article  Google Scholar 

  • Sugiura S, Nakajima M, Iwamoto S, Seki M (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17(18):5562–5566

    Article  Google Scholar 

  • Tan YC, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4(4):292–298

    Article  Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166

    Article  Google Scholar 

  • Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541

    Article  Google Scholar 

  • Windhab EJ, Dressler M, Feigl K, Fischer P, Megias-Alguacil D (2005) Emulsion processing—from single-drop deformation to design of complex processes and products. Chem Eng Sci 60(8–9):2101–2113

    Article  Google Scholar 

  • Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125(37):11170–11171

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the partial support by the German “Landesstiftung Baden-Württemberg gGmbH”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Haeberle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haeberle, S., Zengerle, R. & Ducrée, J. Centrifugal generation and manipulation of droplet emulsions. Microfluid Nanofluid 3, 65–75 (2007). https://doi.org/10.1007/s10404-006-0106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-006-0106-7

Keywords

Navigation