Skip to main content
Log in

Performances of a broad range of dielectric stacks for liquid dielectrophoresis transduction

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Among digital microfluidic techniques, liquid dielectrophoresis (LDEP) is well adapted to displace insulating liquids. One of the current challenges for LDEP concerns the robustness of both the dielectric and hydrophobic coatings (deposited atop the driving electrodes). Indeed, such layers may be exposed to high electric field, during operation. There is a need to optimize this stack of insulating layers to first prevent from their dielectric breakdown, secondly reduce the actuation voltage, and lastly ensure a reproducible and well-controlled droplet-generation process. For the first time, an extensive study is presented in that paper, comparing the performances of more than twenty different dielectric stacks (including SiN, High-K materials, hydrophobic coatings) from micro–nanoelectronics know-how and implemented onto a given LDEP design. This generic design features lateral bumps regularly spaced across coplanar electrodes to generate an array of 30 pL DI water droplets in a single open-plate architecture. The experiments have been carefully analyzed to identify which are the best stacks in terms of efficiency and quality for the LDEP transduction. As a result to that study, we propose a guideline to adjust the dielectric coating properties (thickness, material) depending on the liquids to displace and targeted applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C air * :

Capacitance of the air (F m−1)

C i * :

Capacitance of the dielectric layer (F m−1)

C liq * :

Capacitance of the liquid (F m−1)

d i :

Dielectric layer i thickness (m)

E bd :

Breakdown electric field (V m−1)

f :

Applied frequency (Hz)

f th :

Threshold frequency (Hz)

F γ :

Surface tension force (N)

g :

Inter-electrode gap (m)

i :

Nomination of a dielectric i

L :

Electrodes length (m)

m eff :

Efficiency LDEP factor

m qual :

Quality LDEP factor

Na1 :

Actuations number (see Table 2)

Na1/2 :

Actuations number (see Table 2)

R :

Bump radius (m)

R d/b :

Droplet-generation parameter (see Table 2)

R w/d :

Droplet-generation parameter (see Table 2)

V :

Applied voltage (V)

V bd :

Breakdown voltage (V)

V RMS :

Root mean square voltage (V)

V th :

Threshold actuation voltage (V)

V tot :

Total actuation voltage (V)

w :

Electrode width (m)

α :

Equivalent dielectric thickness (m)

γ liq :

Liquid surface tension (N m−1)

Δt :

Signal pulse duration (s)

ε 0 :

Vacuum permittivity (8.85 F m−1)

ε i :

Layer i dielectric constant

ε liq :

Liquid dielectric constant

θ :

Initial Liquid contact angle (rad)

λ R :

Inter bump center distance (m)

σ liq :

Liquid conductivity (S m−1)

References

  • Agache V, Cochet M, Blanc R, Baleras F, Caillat P (2009) High Q factor plate resonators for ultrasensitive mass sensing applications. In: 15th International conference on solid state sensors, actuators and microsystems, transducers 09, pp 1630–1633

  • Agache V, Blanco-Gomez G, Baleras F, Caillat P (2011) An embedded microchannel in a MEMS plate resonator for ultrasensitive mass sensing in liquid. Lab Chip 11:2598–2603

    Article  Google Scholar 

  • Agastin S, King MR, Jones TB (2009) Rapid enrichment of biomolecules using simultaneous liquid and particulate dielectrophoresis. Lab Chip 9:2319–2325

    Article  Google Scholar 

  • Ahmed R, Jones TB (2006) Dispensing picoliter droplets on substrates using dielectrophoresis. J Electrostat 64:543–549

    Article  Google Scholar 

  • Ahmed R, Jones TB (2007) Optimized liquid DEP droplet dispensing. J Micromech Microeng 17:1052–1058

    Article  Google Scholar 

  • Banerjee A, Kreit E, Liu Y, Heikenfeld J, Papautsky I (2012) Reconfigurable virtual electrowetting channels. Lab Chip 12:758–764

    Article  Google Scholar 

  • Bayraktar T, Pidugub SB (2006) Characterization of liquid flows in microfluidic system. Int J Heat Mass Transfer 49:815–824

    Article  MATH  Google Scholar 

  • Behnam M, Kaigala GV, Khorasani M, Marshall P, Backhouse CJ, Elliott DG (2008) An integrated CMOS high voltage supply for lab-on-a-chip systems. Lab Chip 8:1524–1529

    Article  Google Scholar 

  • Blanco-Gomez G, Agache V (2012) Experimental study of energy dissipation in high quality factor hollow square plate MEMS resonators for liquid mass sensing. J Microelectromech Syst 21:224–234

    Article  Google Scholar 

  • Chatterjee D, Hetayothin B, Wheeler AR, King DJ, Garrell RL (2006) Droplet-based microfluidics with nonaqueous solvents and solutions. Lab Chip 6:199–206

    Article  Google Scholar 

  • Chatterjee D, Shepherd H, Garrell RL (2009) Electromechanical model for actuating liquids in a two-plate droplet microfluidic device. Lab Chip 9:1219–1229

    Article  Google Scholar 

  • Chen CH, Tsai SL, Chen MK, Jang LS (2011) Effects of gap height, applied frequency, and fluid conductivity on minimum actuation voltage of electrowetting-on-dielectric and liquid dielectrophoresis. Sens Actuators B 159:321–327

    Article  Google Scholar 

  • Chugh D, Kaler KVIS (2008) Leveraging liquid dielectrophoresis for microfluidic applications. Biomed Mater 3:034009

    Article  Google Scholar 

  • Chugh D, Kaler KVIS (2010) Integrated liquid and droplet dielectrophoresis for biochemical assays. Microfluid Nanofluid 8:445–456

    Article  Google Scholar 

  • Daunay B, Lambert P, Jalabert L, Collard D, Fujita H (2011) Optimization of liquid dielectrophoresis (L-DEP) based devices towards conductive biological liquids handling. Proc Transducers, pp 1256–1259

  • Daunay B, Lambert P, Jalabert L, Kumemura M, Renaudot R, Agache V, Fujita H (2012) Effect of substrate wettability in liquid dielectrophoresis (LDEP) based droplet generation: theoretical analysis and experimental confirmation. Lab Chip 12:361–368

    Article  Google Scholar 

  • Drygiannakis AI, Papathanasiou AG, Boudouvis AG (2009) On the connection between dielectric breakdown strength, trapping of charge, and contact angle saturation in electrowetting. Langmuir 25:147–152

    Article  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281

    Article  Google Scholar 

  • Fan SK, Chen WJ, Lin TH, Wang TT, Lin YC (2009) Reconfigurable liquid pumping in electric-field-defined virtual microchannels by dielectrophoresis. Lab Chip 9:1590–1595

    Article  Google Scholar 

  • Fan SK, Hsu YW, Chen CH (2011) Encapsulated droplets with metered and removable oil shells by electrowetting and dielectrophoresis. Lab Chip 11:2500–2508

    Article  Google Scholar 

  • Hoshino K, Triteyaprasert S, Matsumoto K, Shimoyama I (2004) Electrowetting-based pico-liter liquid actuation in a glass-tube microinjector. Sens Actuators, A 114:473–477

    Article  Google Scholar 

  • Hsu YW, Chen CH, Fan SK (2009) Formation, transportation, and evaporation of encapsulated droplets. In: IEEE International conference on nano/molecular medicine and engineering, Tainan, Taiwan, pp 339–342

  • Jones TB (2001a) Liquid dielectrophoresis on the microscale. J Electrost 51–52:290–299

    Article  Google Scholar 

  • Jones TB (2001) Dynamics of dielectrophoresis liquid microactuation. In: Proceedings 4th International conference on applied electrostatics, Dalian, China

  • Jones TB, Gunji M, Washizu M, Feldman MJJ (2001) Dielectrophoretic liquid actuation and nanodroplet formation. Applied Phys 89:1441–1449

    Google Scholar 

  • Kaler KVIS, Prakash R, Chugh D (2010) Liquid dielectrophoresis and surface microfluidics. Biomicrofluidics 4:1–17

    Article  Google Scholar 

  • Kuiper S, Hendriks B (2005) Voltage reduction in electrowetting-on-dielectric. In: Proceedings of ESA annual meeting, pp 28–36

  • Kumemura M, Yoshizawa S, Collard D, Fujita H (2009) Droplet formation and fusion for enzyme activity measurement by liquid dielectrophoresis. In: 15th International conference on solid state sensors, actuators and microsystems, transducers 09:813–816

  • Kumemura M, Collard D, Yoshizawa S, Wee B, Takeuchi S, Fujita H (2012) Enzymatic reaction in droplets manipulated with liquid dielectrophoresis. ChemPhysChem. doi:10.1002/cphc.201200354

    Google Scholar 

  • Liu H, Dharmatilleke S, Maurya DK, Tay AAO (2010) Dielectric materials for electrowetting-on-dielectric actuation. Microsyst Technol 16:449–460

    Article  Google Scholar 

  • Moon H, Cho SK, Garrell RL, Kim CJ (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92:4080–4088

    Article  Google Scholar 

  • Naik AK, Hanay MS, Hiebert WK, Feng XL, Roukes ML (2009) Towards single-molecule nanomechanical mass spectrometry. Nat Nanotechnol 4:445–450

    Article  Google Scholar 

  • Noh JH, Noh J, Kreit E, Heikenfeld J, Rack PD (2012) Toward active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed oxide thin film transistors. Lab Chip 12:353–360

    Article  Google Scholar 

  • Prakash R, Kaler KVIS (2009) DEP actuation of emulsion jets and dispensing of subnanoliter emulsion droplets. Lab Chip 9:2836–2844

    Google Scholar 

  • Prakash R, Kaler KVIS (2011) Chip based assembly of vesicular bio-sensors using quantum dots as bio-probes. Proc MicroTAS, pp 1448–1450

  • Prakash R, Chugh D, Kaler KVIS (2009) Quantitative DNA hybridization assay on a multiplexed surface microfluidic device. Proc MNMHT, pp 1–9

  • Prakash R, Paul R, Kaler KVIS (2010) Liquid DEP actuation and precision dispensing of variable volume droplets. Lab Chip 10:3094–3102

    Article  Google Scholar 

  • Prakash R, Kaler KVIS, Papageorgiou DP, Papathanasiou AG (2012) Performance of multilayered fluoropolymer surface coating for DEP surface microfluidic devices. Microfluid Nanofluid. doi:10.1007/s10404-012-0963-1

    Google Scholar 

  • Renaudot R, Agache V, Daunay B, Lambert P, Kumemura M, Fouillet Y, Collard D, Fujita H (2011) Optimization of liquid dielectrophoresis (LDEP) digital microfluidic transduction for biomedical applications. Micromachines 2:258–273

    Article  Google Scholar 

  • Renaudot R, Daunay B, Kumemura M, Agache V, Jalabert L., Collard D, Fujita H (2012) Optimized micro devices for liquid-dielectrophoresis (LDEP) actuation of conductive solutions. Sens Actuators B. http://dx.doi.org/10.1016/j.snb.2012.11.049

  • Saeki F, Baum J, Moon H, Yoon JY, Kim CJ, Garrell RL (2001) Electrowetting on dielectrics (EWOD): reducing voltage requirements for microfluidics. Polym Mater Sci Eng 85:12–13

    Google Scholar 

  • Song J, Evans R, Lin YY, Hsu BN, Fair R (2009) A scaling model for electrowetting-on-dielectric microfluidic actuators. Microfluid Nanofluid 7:75–89

    Article  Google Scholar 

  • Swinney K, Bornhop D (2002) Quantification and evaluation of Joule heating in on-chip capillary electrophoresis. Electrophoresis 23:613–620

    Article  Google Scholar 

  • Tsai SL, Hong JL, Chen MK, Jang LS (2011) Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet. Electrophoresis 32:1337–1347

    Article  Google Scholar 

  • Wang KL, Jones TB, Raisanen A (2009) DEP actuated nanoliter droplet dispensing using feedback control. Lab Chip 9:901–909

    Article  Google Scholar 

  • Wee B, Kumemura M, Collard D, Fujita H (2008) Isolation of single DNA molecule in picolitre-sized droplet formed by liquid dielectrophoresis. In: 12th International conference on miniaturized systems for chemistry and life sciences, MicroTAS’08, pp 36–38

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Wu T, Suzukic Y (2011) Engineering superlyophobic surfaces as the novel microfluidic platform for droplet manipulation. Lab Chip 11:3121–3129

    Article  Google Scholar 

  • Yeh YC, Lu IP, Fan SK (2011) A dielectrophoresis micropump for on-chip particles trapping and blood driving in a virtual channel. 15th International conference on miniaturized systems for chemistry and life sciences, MicroTAS’11, pp 1609–1611

  • Yun KS, Cho IJ, Bu JU, Kim CJ, Yoon E (2011) A surface-tension driven micropump for low voltage and low power operations. J Microelectromech Syst 11:454–461

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. Cochet, G. Costa, G. Castellan and A. Bellemin Comte from CEA-LETI, respectively, for chip fabrication, silanization coating and SiOC deposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Renaudot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 1620 kb)

Supplementary material 2 (WMV 2260 kb)

Supplementary material 3 (WMV 2690 kb)

Supplementary material 4 (WMV 2276 kb)

Supplementary material 5 (WMV 2292 kb)

Supplementary material 6 (PDF 330 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renaudot, R., Agache, V., Fouillet, Y. et al. Performances of a broad range of dielectric stacks for liquid dielectrophoresis transduction. Microfluid Nanofluid 15, 297–307 (2013). https://doi.org/10.1007/s10404-013-1156-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1156-2

Keywords

Navigation