Skip to main content
Log in

Quantifying dispersion of finite-sized particles in deterministic lateral displacement microflow separators through Brenner’s macrotransport paradigm

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Deterministic lateral displacement provides a novel and efficient technique for sorting micrometer-sized particles based on particle size. It is grounded on the principle that the paths associated with particles of different diameters, entrained in flow streaming through a periodic lattice of obstacles, are characterized by different deflection angles with respect to the average direction of the carrier flow. Theoretical approaches have been developed, which predict quantitatively the dependence of the average deflection angle on particle size. In this article, we propose an advection–diffusion model for particle transport and investigate the dispersion process about the average particle current, which controls the separation resolution. We show that the interaction between deterministic and stochastic components of particle motion can give rise to enhanced effective dispersion regimes, which may hinder separation far beyond what could be anticipated from the value of the bare particle diffusivity. The large-scale effective diffusion process is typically non-isotropic and is represented by a symmetric second-order tensor whose principal axes are not collinear with the mainstream direction of the carrier flow, or with the average particle current. The enhanced dispersion regimes can be efficiently predicted by a tailored if unconventional implementation of Brenner’s macrotransport paradigm, which amounts to solving a system of two elliptic PDEs on the minimal periodicity cell of the device. The impact of macrotransport parameter on separation resolution is addressed in the concrete case of cylindrical obstacles arranged along a square lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. By the wording “region of locally hindered diffusion” we only denote the subset of the elementary cell where the value of the integration kernel in Eq. (33) is lower than \(\left( \int_{\mathcal{C}} d \mathbf{r} \right)^{-1}.\) Note that this does not mean that initial conditions associated with this region are characterized by a globally hindered diffusion. In fact, regardless of the initial condition, the macroscale diffusion results from the integration of the kernel over the complete volume of the elementary cell.

Abbreviations

a :

Particle radius (Fig. 3)

\(\mathbf{e}_1, \mathbf{e}_2\) :

Lattice vectors (Fig. 1)

\(\mathbf{r}\) :

Intracellular position vector (Fig. 4)

\(\mathbf{u}(\mathbf{r})\) :

Local velocity vector of the carrier fluid

u(x 1, x 2):

Horizontal component of the carrier flow velocity w.r.t. x 1 x 2 axes (Eq. (34))

v(x 1, x 2):

Vertical component of the carrier flow velocity w.r.t. x 1 x 2 axes (Eq. (34))

\(\mathbf{x}=(x_1,x_2)\) :

Global coordinate system aligned with the average carrier flow velocity \(\mathbf{U}\) (Fig. 2a)

\(\mathbf{x}^*=(x^*_1,x^*_2)\) :

Global coordinate system aligned with the lattice vector \(\mathbf{e}_2\) (Fig. 2a)

\(\mathbf{B}_{\pi}(\mathbf{r})\) :

Periodicized (dimensionless) corrector field (Eq. (28))

D ij :

Components of the effective diffusivity tensor \(\mathbb{D}\) projected along the axis x 1 x 2

D * ij :

Components of the effective diffusivity tensor \(\mathbb{D}\) projected along the axis x *1 x *2

\(\mathbf{J}(\mathbf{r})\) :

Dimensionless local particle current (Eq. (29))

R p :

Radius of the cylindrical obstacle, made dimensionless w.r.t. λ (Fig. 6)

R eff :

Dimensionless radius of the effective obstacle, R eff = R p + ρ p (Fig. 6)

\(\mathbf{U}\) :

Average flow velocity

U :

Magnitude of the average flow velocity, \(U= \lVert \mathbf{U} \rVert\)

\(\mathbf{W}\) :

Dimensionless average particle velocity (Eq. (29))

W i :

Components of \(\mathbf{W}\) along the x 1 x 2 axes

W * i :

Components of \(\mathbf{W}\) along the x *1 x *2 axes

\(\mathbf{X}=(X_1, X_2)\) :

Macroscale coordinate system (Fig. 4)

ϕ :

Microscale particle number density function (Eq. 1)

ηξ :

Local dimensionless coordinates in the unit cell (Fig. 6)

λ :

Characteristic length of the periodicity cell (Fig. 6)

μ :

Dynamic viscosity of the carrier fluid

ρ p :

Dimensionless particle radius, ρ p = a/λ

θl :

Lattice angle (Fig. 1)

\({\Upphi}\) :

Macroscale particle number density function (Eq. 6)

\({\Uptheta}_{\rm l}\) :

Lattice angle parameter \({\Uptheta}_{\rm l}=\tan({\theta}_{\rm l})\)

\({\Uptheta}_{\rm p}\) :

Average particle deflection parameter (Eq. 46)

\({\Upomega}\) :

Region occupied by the cylindrical obstacle in the unit cell domain (Fig. 3)

\({\Upomega}_{\rm eff}\) :

Region occupied by effective obstacle in the unit cell domain (Fig. 3)

\(\mathcal{D}_{\rm p}\) :

Bare particle diffusivity (supposed isotropic), estimated through Stokes–Einstein relationship \(\mathcal{D}_{\rm p}=k_{\rm b} T /( 6 {\pi} a {\mu})\)

\(\mathbb{D}\) :

Macroscale effective diffusivity tensor defined in Eq. (6)

\(\mathcal{P}(\mathbf{r})\) :

Steady-state local zero-th order moment of the particle number density (Eq. 16)

Pep :

Particle Peclét number, \({\rm Pe}_{\rm p}=UL/ \mathcal{D}_{\rm p},\) yielding the ratio between characteristic times of diffusion and convection within the unit cell

References

  • Al-Fandi M, Al-Rousan M, Jaradat M, Al-Ebbini L (2011) New design for the separation of microorganisms using microfluidic deterministic lateral displacement. Robot Comput-Integr Manuf 27(2):237–244

    Article  Google Scholar 

  • Balvin M, Sohn E, Iracki T, Drazer G, Frechette J (2009) Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys Rev Lett 103:078301

    Article  Google Scholar 

  • Brenner H, Edwards D (1993) Macrotransport processes (Butterworth-Heinemann Series in Chemical Engineering, New York 1993)

    Google Scholar 

  • Cerbelli S (2012) Separation of polydisperse particle mixtures by deterministic lateral displacement. The impact of particle diffusivity on separation efficiency. Asia-Pac J Chem Eng 7(Suppl 3):S356–S371

    Google Scholar 

  • Dorfman K, Brenner H (2002) Separation mechanisms underlying vector chromatography in microlitographic arrays. Phys Rev E 65(2):021103/1

    Google Scholar 

  • Edwards D, Shapiro M, Brenner H, Shapira M (1991) Dispersion of inert solutes in spatially periodic, two-dimensional model porous media. Transp Porous Media 6(4):337–358

    Article  Google Scholar 

  • Fannjiang A, Papanicolaou G (1994) Convection-enhanced diffusion for periodic flows. SIAM J Appl Math 54:333–408

    Article  MathSciNet  MATH  Google Scholar 

  • Frechette J, Drazer G (2009) Directional locking and deterministic separation in periodic arrays. J Fluid Mech 627:379–401

    Article  MATH  Google Scholar 

  • Gauthier M, Slater G, Dorfman K (2004) Exact lattice calculations of dispersion coefficients in the presence of external fields and obstacles. Eur Phys J E 15(1):71–82

    Article  Google Scholar 

  • Ghosh P, Hänggi P, Marchesoni F, Martens S, Nori F, Schimansky-Geier L, Schmid G (2012) Driven Brownian transport through arrays of symmetric obstacles. Phys Rev E 85(1):011101

    Article  Google Scholar 

  • Gleeson J, Sancho J, Lacasta A, Lindenberg K (2006) Analytical approach to sorting in periodic and random potentials. Phys Rev E 73:041102

    Article  MathSciNet  Google Scholar 

  • Green J, Radisic M, Murthy S (2009) Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal Chem 81(21):9178–9182

    Article  Google Scholar 

  • Grimm A, Grser O (2010) Obstacle design for pressure-driven vector chromatography in microfluidic devices. EPL 92(2):24001

    Article  Google Scholar 

  • Heller M, Bruus H (2008) A theoretical analysis of the resolution due to diffusion and size dispersion of particles in deterministic lateral displacement devices. J Micromech Microeng 18:075030

    Article  Google Scholar 

  • Herrmann J, Karweit M, Drazer G (2009) Separation of suspended particles by directional locking in periodic fields. Phys Rev E 79:061404

    Article  Google Scholar 

  • Holm S, Beech J, Barrett M, Tegenfeldt J (2011) Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11(7):1326–1332

    Article  Google Scholar 

  • Huang L, Cox E, Austin R, Sturm J (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990

    Article  Google Scholar 

  • Inglis D, Davis J, Austin R, Sturm J (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–658

    Article  Google Scholar 

  • Inglis D (2009) Efficient microfluidic particle separation arrays. Appl Phys Lett 94(1):013510

    Article  Google Scholar 

  • Inglis D, Herman N, Vesey G (2010) Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics 4(2):024109

    Article  Google Scholar 

  • Kirchner J, Hasselbrink E Jr (2005) Dispersion of solute by electrokinetic flow through post arrays and wavy-walled channels. Anal Chem 77(4):1140–1146

    Article  Google Scholar 

  • Lasota AA, Mackey M (1994) Chaos, fractals, and noise: stochastic aspects of dynamics, vol 97, 2nd edn. Appl Math Sci. Springer, New York

  • Li Z, Drazer G (2007) Separation of suspended particles by array of obstacles in microfluidic devices. Phys Rev Lett 98:050602

    Article  Google Scholar 

  • Li N, Kamei D, Ho CM (2007) On-chip continuous blood cell subtype separation by deterministic lateral displacement. Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007, pp 932–936

    Google Scholar 

  • Long B, Heller M, Beech J, Linke H, Bruus H, Tegenfeldt J (2008) Multidirectional sorting modes in deterministic lateral displacement devices. Phys Rev E 78:046304

    Article  Google Scholar 

  • Loutherback K, Chou K, Newman J, Puchalla J, Austin R, Sturm J (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluid 9(6):1143–1149

    Article  Google Scholar 

  • Maxey M, Riley J (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–889

    Article  MATH  Google Scholar 

  • Small H, Lanshorst M (1982) Hydrodynamic chromatography. Anal Chem 54(8):892A–898A

    Google Scholar 

  • Sun T, Chance R, Graessley W, Lohse D (2004) A study of the separation principle in size exclusion chromatography. Macromolecules 37(11):4304–4312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Cerbelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerbelli, S., Giona, M. & Garofalo, F. Quantifying dispersion of finite-sized particles in deterministic lateral displacement microflow separators through Brenner’s macrotransport paradigm. Microfluid Nanofluid 15, 431–449 (2013). https://doi.org/10.1007/s10404-013-1150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1150-8

Keywords

Navigation