Skip to main content

Advertisement

Log in

Microfluidic applications of functionalized magnetic particles for environmental analysis: focus on waterborne pathogen detection

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The continuous surveillance of drinking water is extremely important to provide early warning of contamination and to ensure continuous supplies of healthy drinking water. Isolation and detection of a particular type of pathogen present at low concentration in a large volume of water, concentrating the analyte in a small detection volume, and removing detection inhibiting factors from the concentrated sample, present the three most important challenges for water quality monitoring laboratories. Combining advanced biological detection methods (e.g., nucleic acid-based or immunology-based protocols) with microfluidics and immunomagnetic separation techniques that exploit functionalized magnetic particles has tremendous potential for realization of an integrated system for pathogen detection, in particular, of waterborne pathogens. Taking advantage of the unique properties of magnetic particles, faster, more sensitive, and more economical diagnostic assays can be developed that can assist in the battle against microbial pathogenesis. In this review, we highlight current technologies and methods used for realization of magnetic particle-based microfluidic integrated waterborne pathogen isolation and detection systems, which have the potential to comply in future with regulatory water quality monitoring requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso JL, Amoros I, Canigral I (2001) Development and evaluation of a real-time PCR assay for quantification of Giardia and Cryptosporidium in sewage samples. Appl Microbiol Biotechnol 89:1203–1211

    Article  Google Scholar 

  • Aw TG, Rose JB (2011) Detection of pathogens in water: from phylochips to qPCR to pyrosequencing. Cur Opin Biotechnol 23:1–9

    Google Scholar 

  • Behets J, Declerck P, Delaedt Y, Verelst L, Ollevier F (2007) A duplex real-time PCR assay for the quantitative detection of Naegleria Fowleri in water samples. Water Res 41:118–126

    Article  Google Scholar 

  • Beyor N, Seo TS, Liu P, Mathies RA (2008) Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomed Microdevices 10:909–917

    Article  Google Scholar 

  • Beyor N, Yi L, Seo TS, Richard A (2009) Mathies. Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal Chem 81:3523–3528

    Article  Google Scholar 

  • Boehm DA, Gottlieb PA, Hua SZ (2007) On-chip microfluidic biosensors for bacterial detection and identification. Sens Actuat B 126:508–514

    Article  Google Scholar 

  • Bouzid M, Steverding D, Tyler MK (2008) Detection and surveillance of waterborne protozoan parasites. Curr Opin Biotechnol 19:1–5

    Article  Google Scholar 

  • Brooks BW, Devenish J, Lutze-Wallace CL, Milnes D, Robertson RH, Berlie-Surujballi G (2004) Evaluation of a monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Campylobacter fetus in bovine preputial washing and vaginal mucus samples. Vet Microbiol 103:77–84

    Article  Google Scholar 

  • Cady NC, Stelick S, Kunnavakkam MV, Batt CA (2005) Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform. Sens Actuat B 107:332–341

    Article  Google Scholar 

  • Campbell GA, Mutharasan R (2008) Near real-time detection of Cryptosporidium parvum oocyst by IgM-functionalized piezoelectric-excited millimeter-sized cantilever biosensor. Biosens Bioelectron 23:1039–1045

    Article  Google Scholar 

  • Chandler DP, Brown J, Call DR, Grate JW, Holman DA, Olson L, Stottlemyer MS (2000) Continuous, automated immunomagnetic separation and microarray detection of E. coli O157:H7 from poultry carcass rinse. Int J Food Microbiol 70:143–154

    Article  Google Scholar 

  • Chang WH, Yang SY, Wang CH, Tsai MA, Wang PC, Chen TY, Chen SC, Lee GB (2012) Rapid isolation and detection of aquaculture pathogens in an integrated microfluidic system using loop-mediated isothermal amplification. Sens Actuat B. doi:10.1016/j.snb.2011.12.054

  • Chemla YR, Grossman HL, Poon Y, McDermott R, Stevens R, Alper MD, Clarke J (2000) Ultrasensitive magnetic biosensor for homogeneous immunoassay. PNAS 97:14268–14272

    Article  Google Scholar 

  • Chen G, Lin Y, Wang J (2006) Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. Talanta 68:497–503

    Article  Google Scholar 

  • Cheng VCC, Yew WW, Yuen KY (2005) Molecular diagnostic in turberculosis. Eur J Clin Microbiol Infect Dis 24:711–720

    Article  Google Scholar 

  • Cheng XH, Liu YS, Irimia D, Demirci U, Yang L, Zamir L, Rodríguez WR, Toner Mand Bashir R (2007) Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip 7:746–755

    Article  Google Scholar 

  • Deisingh AK, Thompson M (2004) Strategies for the detection of Escherichia coli O157:H7 in foods. J Appl Microbiol 96:419–429

    Article  Google Scholar 

  • Ferrari BC, Stoner K, Bergquist PL (2006) Applying fluorescence based technology to the recovery and isolation of Cryptosporidium and Giardia from industrial wastewater streams. Water Res 40:541–548

    Article  Google Scholar 

  • Fu Z, Rogelj S, Kieft TL (2005) Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR. Int J Food Microbiol 99:47–57

    Article  Google Scholar 

  • Gerba CP (1996) Pathogens in the environment. In: Brusseau ML, Pepper IL, Gerba CP (eds) Pollution science. Academic Press, New York, pp 279–299

    Google Scholar 

  • Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40

    Google Scholar 

  • Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110:1518–1563

    Article  Google Scholar 

  • Grossman HL, Myers WR, Vreeland VJ, Bruehl R, Alper MD, Bertozzi CR, Clarke J (2004) Detection of bacteria in suspension by using a superconducting quantum interference device. PNAS 101:129–134

    Article  Google Scholar 

  • http://www.epa.gov/microbes/1623de05.pdf

  • Hudson JA, Lake RJ, Savill MG, Scholes P, McCormick RE (2001) Rapid detection of Listeria monocytogenes in ham samples using immunomagnetic separation followed by polymerase chain reaction. J Appl Microbiol 90:614–621

    Article  Google Scholar 

  • Jofré A, Martin B, Garriga M, Hugas M, Pla M, Rodríguez-Lázaro D, Aymerich T (2005) Simultaneous detection of Listeria monocytogenes and Salmonella by multiplex PCR in cooked ham. Food Microbiol 22:109–115

    Article  Google Scholar 

  • Jokerst JC, Emory JM, Henry CS (2012) Advances in microfluidics for environmental analysis. Analyst 137:24–34

    Google Scholar 

  • Kaittanis C, Naser SA, Perez JM (2007) One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett 7:380–383

    Article  Google Scholar 

  • Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliver Rev 62:408–423

    Article  Google Scholar 

  • Karanis P, Kourenti C, Smith H (2007) Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J Water Health 5:1–38

    Article  Google Scholar 

  • Kramer MF, Vesey G, Look NL, Herbert BR, Simpson-Stroot JM, Lim DV (2007) Development of a Cryptosporidium oocyst assay using an automated fiber optic-based biosensor. J Biol Eng 1:3

    Article  Google Scholar 

  • Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection. A perspective of traditional methods and biosensors. Biosen Bioelect 22:1205–1217

    Article  Google Scholar 

  • LeBlanc N, Gantelius J, Schwenk JM, Stahl K, Blomberg J, Andersson-Svahn H, Belaka S (2009) Development of a magnetic bead microarray for simultaneous and simple detection of four pestiviruses. J Virol Meth 155:1–9

    Article  Google Scholar 

  • Lee H, Sun E, Ham D, Weissleder R (2008) Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med 14:869–874

    Article  Google Scholar 

  • Lien KY, Hung LY, Huang TB, Tsai YC, Lei HY, Lee GB (2011) Rapid detection of influenza A virus infection utilizing an immunomagnetic bead-based microfluidic system. Biosens Bioelectron 26:3900–3907

    Article  Google Scholar 

  • Lin CC, Chen A, Lin CH (2008) Microfluidic cell counter/sorter utilizing multiple particle tracing technique and optically switching approach. Biomed Microdevices 10:55–63

    Article  Google Scholar 

  • Liu WT, Zhu L (2005) Environmental microbiology-on-a-chip and its future impacts. Trends Biotechnol 23:174–179

    Article  MathSciNet  Google Scholar 

  • Mairhofer J, Roppert K, Ertl P (2009) Microfluidic systems for pathogen sensing: a review. Sensors 9:4804–4823

    Article  Google Scholar 

  • Mandal PK, Biswas AK, Choi K, Pal UK (2011) Methods for rapid detection of foodborne pathogens: an overview. Am J Food Technol 6:87–102

    Article  Google Scholar 

  • Mason HY, Lloyd C, Dice M, Sinclair R, Ellis W, Powers L (2003) Taxonomic identification of microorganisms by capture and intrinsic fluorescence detection. Biosens Bioelectron 18:521–527

    Article  Google Scholar 

  • Moser Y, Lehnert T, Gijs MAM (2009a) On-chip immuno-agglutination assay with analyte capture by dynamic manipulation of superparamagnetic beads. Lab Chip 9:3261–3267

    Article  Google Scholar 

  • Moser Y, Lehnert T, Gijs MAM (2009b) Quadrupolar magnetic actuation of superparamagnetic particles for enhanced microfluidic perfusion. Appl Phys Lett 94:022505

    Article  Google Scholar 

  • Mujikaa M, Arana S, Castano E, Tijero M, Vilares R, Ruano-López J, Cruzc A, Sainz L, Berganza J (2009) Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. Biosens Bioelect 24:1253–1258

    Article  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. In: Cold spring harbor symposia on quantitative biology, vol 51. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 263–273

  • Mulvaney SP, Mattoussi HM, Whitman LJ (2004) Incorporating fluorescent dyes and quantum dots into magnetic microbeads for immunoassays. Biotechniques 36(4):602–606 (608–609)

    Google Scholar 

  • Mulvaney SP, Cole CL, Kniller MD, Malito M, Tamanaha CR, Rife JC, Stanton MW, Whitman LJ (2007) Rapid, femtomolar bioassays in complex matrices combining microfluidics and magnetoelectronics. Biosens Bioelectron 23:191–200

    Article  Google Scholar 

  • Ongerth JE, Stibbs HH (1987) Identification of Cryptosporidium oocysts in river water. Appl Environ Microbiol 53:672–676

    Google Scholar 

  • Palumbo JD, Borucki MK, Mandrell RE, Gorski L (2003) Serotyping of Listeria monocytogenes byenzyme-linked immunosorbent assay and identification of mixed-serotype cultures by colony immunoblotting. J Clin Microbiol 41:564–571

    Article  Google Scholar 

  • Ramadan Q (2009) Reversible assembly of magnetized particles: application to water-borne pathogen enumeration. J App Phys 106(124701):2009

    Google Scholar 

  • Ramadan Q, Gijs MAM (2011) Simultaneous sample washing and concentration using a “trapping-and-releasing” mechanism of magnetic beads on a microfluidic chip. Analyst 136:1157–1166

    Article  Google Scholar 

  • Ramadan Q, Lau TT, Ho S (2010a) Magnetic-based purification system with simultaneous sample washing and concentration. Anal Bioanal Chem 396:707–714

    Article  Google Scholar 

  • Ramadan Q, Lay C, Teo W, Hua FH (2010b) Flow-through immunomagnetic separation system for waterborne pathogens isolation and detection: application to giardia and cryptosporidium cells isolation. Anal Chim Acta 673:101–108

    Article  Google Scholar 

  • Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77:5628–5634

    Article  Google Scholar 

  • Rida A, Gijs MAM (2004a) Dynamics of magnetically retained supraparticle structures in a liquid flow. Appl Phys Lett 85:4986–4988

    Article  Google Scholar 

  • Rida A, Gijs MAM (2004b) Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Anal Chem 76:6239–6246

    Article  Google Scholar 

  • Rider TH, Petrovick MS, Nargi RE, Harper JD, Schwoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J, Hollis MA (2003) A B cell-based sensor for rapid identification of pathogens. Science 301:213–215

    Article  Google Scholar 

  • Rife JC, Miller MM, Sheehan PE, Tamanaha CR, Tondra M, Whitman LJ (2003) Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sens Actuat A 107:209–218

    Article  Google Scholar 

  • Rodriguez WR, Christodoulides N, Floriano PN, Graham S, Mohanty S, Dixon M, Hsiang M, Peter T, Zavahir S, Thior I, Romanovicz D, Bernard B, Goodey AP, Walker BD, McDevitt JT (2005) A microchip CD4 counting method for HIV monitoring in resource-poor settings. PLoS Med 2:e182

    Article  Google Scholar 

  • Rodríguez-Lázaro D, D’Agostino M, Herrewegh A, Pla M, Cook N, Ikonomopoulos J (2005) Real-time PCR-based methods for detection of Mycobacterium avium subsp. paratuberculosis in water and milk. Int J Food Microbiol 101:93–104

    Article  Google Scholar 

  • Rotariu O, Ogden ID, MacRae M, Badescu V, Strachan NJC (2005a) A immunomagnetic separator for concentration of pathogenic micro-organisms from large volume samples. J Magnet Magnet Mater 293:589–596

    Article  Google Scholar 

  • Rotariu O, Ogden ID, MacRae M, Udrea LE, Strachan NJC (2005b) Multiple sample flow through immunomagnetic separator for concentrating pathogenic bacteria. Phys Med Biol 50:2967–2977

    Article  Google Scholar 

  • Rubina Y, Chen Z, Whitney H, Gwendolyn S, Montagna R (2010) Automatic and rapid molecular detection of E. coli and Enterococci in raw recreational water samples using the fully automated Rheonix CARD® Technology Platform. Great Lakes beach conference meeting, October 2010

  • Salyers AA, Whitt DD (2002) Bacterial pathogenesis: a molecular approach, 2nd edn. ASM Press, Washington, DC

    Google Scholar 

  • Schafer DN, Gibson EA, Salim EA, Palmer AE, Jimenez R, Squier J (2009) Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding. Opt Express 17:6068–6073

    Article  Google Scholar 

  • Schwab KJ, DeLeon R, Sobsey MD (1996) Immunoaffinity concentration and purification of waterborne enteric viruses for detection by reverse transcriptase PCR. Appl Environ Microbiol 62:2086–2904

    Google Scholar 

  • Setterington EB, Alocilja EC (2010) Rapid electrochemical detection of polyaniline-labeled Escherichia coli O157:H7. Biosens Bioelectron 26:2208–2214

    Article  Google Scholar 

  • Shepherd KM, Wyn-Jones AP (1996) An evaluation of methods for the simultaneous detection of Cryptosporidium oocysts and Giardia cysts from water. Appl Environ Microbiol 62:1317–1322

    Google Scholar 

  • Shim WB, Choi JG, Kim JY, Yang ZY, Lee KH, Kim MG DO, Ha SD, Kim KS, Kim KY, Kim CH, Ha KS, Eremin SA, Chung AD (2007) Production of monoclonal antibody against Listeria monocytogenes and its application to immunochromatography strip test. J Microbiol Biotechnol 17:1152–1161

    Google Scholar 

  • Sinha A, Ganguly R, Puri K (2009) Magnetic separation from superparamagnetic particle suspensions. J Magn Magn Mater 321:2251–2256

    Article  Google Scholar 

  • Stedtfeld RD, Baushke SW, Tourlousse DM, Miller SM, Stedtfeld TM, Gulari E, Tiedje JM, Hashsham SA (2008) Development and experimental validation of a predictive threshold cycle equation for quantification of virulence and marker genes by high-throughput nanoliter-volume PCR on the OpenArray Platform. Appl Environ Microbiol 74:3831–3838

    Article  Google Scholar 

  • Straub T, Chandler D (2003) Towards a unified system for detecting waterborne pathogens. J Microbiol Methods 53:185–197

    Article  Google Scholar 

  • Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127

    Article  Google Scholar 

  • Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yagliderea O, Ozcan A (2010) Lensfree microscopy on a cellphone. Lab Chip 10:1787–1792

    Article  Google Scholar 

  • United States Environmental Protection Agency (1988) Comparative health effects assessment of drinking water. Washington, DC

  • Van Doorn R, Klerks MM, van Gent-Pelzer MPE, Speksnijder AGCL, Kowalchuk GA, Schoen CD (2009) Accurate quantification of microorganisms in PCR-inhibiting environmental DNA extracts by a novel internal amplification control approach using Biotrove OpenArrays. Appl Environ Microbiol 75:7253–7260

    Article  Google Scholar 

  • Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254

    Article  Google Scholar 

  • Wang C, Irudayaraj J (2010) Multifunctional magnetic–optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 6:283–289

    Article  Google Scholar 

  • Wang YN, Kang Y, Xu D, Chan CH, Barnett L, Kalams SA, Lib D, Li DQ (2008) On-chip counting the number and the percentage of CD4 + T lymphocytes. Lab Chip 8:309–315

    Article  Google Scholar 

  • WHO (2011) Chapter 7: microbial aspect. Guidelines for drinking-water quality. Edn 4

  • WHO Guidelines for drinking-water quality (2006) Vol 1 recommendations. World Health Organization, Geneva

    Google Scholar 

  • Yang S, Rothman RE (2004) PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 4:337–348

    Article  Google Scholar 

  • Yaron S, Matthews K (2002) A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: investigation of specific target genes. J Appl Microbiol 92:633–640

    Article  Google Scholar 

  • Zarlenga DS, Trout JM (2004) Concentrating, purifying and detecting waterborne parasites. Veter Parasitol 126:195–217

    Article  Google Scholar 

  • Zaytseva NV, Goral VN, Montagna RA, Baeumner AJ (2005) Development of a microfluidic biosensor module for pathogen detection. Lab Chip 5:805–811

    Article  Google Scholar 

  • Zhang L, Xua J, Mi L, Gong H, Jiang S, Yu Q (2012) Multifunctional magnetic–plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. Biosens Bioelect 31:130–136

    Article  Google Scholar 

  • Zhao W, Yao S, Hsing IM (2006) Microsystem compatible strategy for viable Escherichia coli detection. Biosens Bioelectron 21:1163–1170

    Article  Google Scholar 

  • Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011a) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83:6641–6647

    Article  Google Scholar 

  • Zhu H, Yaglidere O, Su TW, Tseng D, Ozcana A (2011b) Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11:315–322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasem Ramadan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramadan, Q., Gijs, M.A.M. Microfluidic applications of functionalized magnetic particles for environmental analysis: focus on waterborne pathogen detection. Microfluid Nanofluid 13, 529–542 (2012). https://doi.org/10.1007/s10404-012-1041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1041-4

Keywords

Navigation