Skip to main content
Log in

Determination of accommodation coefficients of a gas mixture in a nanochannel with molecular dynamics

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A molecular-dynamics (MD) study of non-reacting and disparate mass binary gas mixture is conducted. The interaction properties of a typical mixture of gases on the walls of a nanochannel, at moderately rarefied conditions, are investigated with MD. The study discusses the method of calculation of the energy and the momentum accommodation coefficients for a binary gas mixture confined in a nanochannel. The thermal distributions are obtained from the imposed thermal wall conditions using MD. While keeping the bulk number density a constant, the interaction properties of gas mixtures at different molar concentration of individual components are determined. The accommodation properties are found to increase with an increase in concentration of heavier gas component in the gas mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen MP, Tildesley DJ (1994) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  • Arkilic EB, Breuer KS, Schmidt MA (2001) Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech 437:29–43

    Article  MATH  Google Scholar 

  • Barisik M, Beskok A (2011) Equilibrium molecular dynamics studies on nanoscale-confined fluids. Microfluid Nanofluid 11(3):269–282

    Article  Google Scholar 

  • Barisik M, Beskok A (2012) Surface–gas interaction effects on nanoscale gas flows. Microfluid Nanofluid 1–10. doi:10.1007/s10404-012-1000-0

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  • Bhattacharya DK, Lie GC (1989) Molecular-dynamics simulations of nonequilibrium heat and momentum transport in very dilute gases. Phys Rev Lett 62(8):897–900

    Article  Google Scholar 

  • Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Oxford University Press, New York

    Google Scholar 

  • Black JE, Bopp P (1987) A molecular dynamics study of the behaviour of xenon physisorbed on Pt(111): Coverages less than one monolayer. Surf Sci 182(1–2):98–124

    Article  Google Scholar 

  • Cao BY, Sun J, Chen M, Guo ZY (2009) Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. Int J Mol Sci 10(11):4638–4706

    Article  Google Scholar 

  • Firouzi M, Tsotsis TT, Sahimi M (2007) Molecular dynamics simulations of transport and separation of supercritical carbon dioxide-alkane mixtures in supported membranes. Chem Eng Sci 62(10):2777–2789

    Article  Google Scholar 

  • Harley JC, Huang Y, Bau HH, Zemel JN (1995) Gas flow in micro-channels. J Fluid Mech 284:257–274

    Article  Google Scholar 

  • Heffelfinger GS, van Swol F (1994) Diffusion in Lennard-Jones fluids using dual control volume grand canonical molecular dynamics simulation (DCV-GCMD). J Chem Phys 100(10):7548–7552

    Article  Google Scholar 

  • Jenkins JT, Mancini F (1989) Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys Fluids A Fluid Dyn 1(12):2050–2057

    Article  MathSciNet  MATH  Google Scholar 

  • John B, Gu XJ, Emerson DR (2011) Effects of incomplete surface accommodation on non-equilibrium heat transfer in cavity flow: a parallel DSMC study. Comput Fluids 45(1):197–201

    Article  MATH  Google Scholar 

  • Kandemir I, Sevilgen FE (2008) Molecular dynamics simulation of helium–argon gas mixture under various wall conditions. Mol Simul 34(8):795–808

    Article  Google Scholar 

  • Malek K, Sahimi M (2010) Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes. J Chem Phys 132(1):014,310

    Article  Google Scholar 

  • Markvoort AJ, Hilbers PAJ, Nedea SV (2005) Molecular dynamics study of the influence of wall-gas interactions on heat flow in nanochannels. Phys Rev E 71(6):066702

    Article  Google Scholar 

  • Morini GL, Yang Y, Chalabi H, Lorenzini M (2011) A critical review of the measurement techniques for the analysis of gas microflows through microchannels. Exp Thermal Fluid Sci 35(6):849–865

    Article  Google Scholar 

  • Naris S, Valougeorgis D, Kalempa D, Sharipov F (2005) Flow of gaseous mixtures through rectangular microchannels driven by pressure, temperature, and concentration gradients. Phys Fluids 17(10):100607

    Article  Google Scholar 

  • Pitakarnnop J, Varoutis S, Valougeorgis D, Geoffroy S, Baldas L, Colin S (2010) A novel experimental setup for gas microflows. Microfluid Nanofluid 8(1):57–72

    Article  Google Scholar 

  • Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117(1):1–19

    Article  MATH  Google Scholar 

  • Prabha SK, Sathian SP (2012) Molecular-dynamics study of poiseuille flow in a nanochannel and calculation of energy and momentum accommodation coefficients. Phys Rev E 85(4):041201

    Article  Google Scholar 

  • Present RD, Debethune AJ (1949) Separation of a gas mixture flowing through a long tube at low pressure. Phys Rev 75(7):1050–1057

    Article  MATH  Google Scholar 

  • Siewert C, Valougeorgis D (2004) The McCormack model: channel flow of a binary gas mixture driven by temperature, pressure and density gradients. Eur J Mech B Fluids 23(4):645–664

    Article  MathSciNet  MATH  Google Scholar 

  • Spijker P, Markvoort AJ, Nedea SV, Hilbers PAJ (2010) Computation of accommodation coefficients and the use of velocity correlation profiles in molecular dynamics simulations. Phys Rev E 81(1):011203

    Article  Google Scholar 

  • Trott WM, neda JNC, Torczynski JR, Gallis MA, Rader DJ (2011) An experimental assembly for precise measurement of thermal accommodation coefficients. Rev Sci Instrum 82(3):035120

    Article  Google Scholar 

  • Xu L, Sedigh MG, Sahimi M, Tsotsis TT (1998) Nonequilibrium molecular dynamics simulation of transport of gas mixtures in nanopores. Phys Rev Lett 80(16):3511–3514

    Article  Google Scholar 

  • Yamaguchi H, Hanawa T, Yamamoto O, Matsuda Y, Egami Y, Niimi T (2011) Experimental measurement on tangential momentum accommodation coefficient in a single microtube. Microfluid Nanofluid 11(1):57–64

    Article  Google Scholar 

  • Yamamoto K (2002) Slip flow over a smooth platinum surface. JSME Int J Ser B Fluids Therm Eng 45(4):788–795

    Article  Google Scholar 

  • Yamamoto K, Takeuchi H, Hyakutake T (2007) Scattering properties and scattering kernel based on the molecular dynamics analysis of gas-wall interaction. Phys Fluids 19(8):087102

    Article  Google Scholar 

  • Zhang H, Zhang Z, Zheng Y, Ye H (2010) Corrected second-order slip boundary condition for fluid flows in nanochannels. Phys Rev E 81(6):066303

    Article  Google Scholar 

  • Zhang H, Zhang Z, Ye H (2012) Molecular dynamics-based prediction of boundary slip of fluids in nanochannels. Microfluid Nanofluid 12(1):107–115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarith P. Sathian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabha, S.K., Sathian, S.P. Determination of accommodation coefficients of a gas mixture in a nanochannel with molecular dynamics. Microfluid Nanofluid 13, 883–890 (2012). https://doi.org/10.1007/s10404-012-1020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1020-9

Keywords

Navigation