Skip to main content
Log in

Simulation of nanoparticle thermal diffusion in dense gases and fluids by the molecular dynamics method

  • Optics of Clusters, Aerosols, and Hydrosoles
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of the thermal diffusion of nanoparticles in dense gases and fluids by the method of molecular dynamics with Rudyak–Krasnolutskii nanoparticle–molecule and Rudyak–Krasnolutskii–Ivanov nanoparticle–nanoparticle potentials. The thermal diffusion and binary diffusion coefficients were calculated with the help of the fluctuation-dissipation theorem. Nanofluids simulated consisted of argon as а carrier medium and aluminum nanoparticles. Dependences of the nanoparticle thermal diffusion and Soret coefficients on the particle diameter and volume concentration were derived. The thermal diffusion coefficient showed a significant dependence on the particle size for small nanoparticles (1–4 nm diameter).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ya. Rudyak, “Modern status of research of nanofluids viscosity,” Vestn. NGU, Fiz. 10 (1), 5–22 (2015).

    MathSciNet  Google Scholar 

  2. P. M. Kumar, J. Kumar, R. Tamilarasan, S. Sendhilnathan, and S. Suresh, “Review on nanofluids theoretical thermal conductivity models,” Engin. J. 19 (1), 67–83 (2015).

    Article  Google Scholar 

  3. V. Ya. Rudyak and S. L. Krasnolutskii, “Effective viscosity coefficient of rarefied gas nanosuspensions,” Atmos. Ocean. Opt. 17 (5–6), 468–475 (2004).

    Google Scholar 

  4. V. Ya. Rudyak, S. L. Krasnolutskii, A. G. Nasibulin, and E. I. Kauppinen, “Methods of measuring the diffusion coefficient and sizes of nanoparticles in a rarefied gas,” Dokl. Akad. Nauk Phys. 47 (10), 758–761 (2002).

    Article  Google Scholar 

  5. V. Ya. Rudyak, S. N. Dubtsov, and A. M. Baklanov, “Measurements of the temperature dependent diffusion coefficient of nanoparticles in the range of 295–600 K at atmospheric pressure,” J. Aerosol Sci. 40 (10), 833–843 (2009).

    Article  Google Scholar 

  6. V. Ya. Rudyak and S. L. Krasnolutskii, “On thermal diffusion of nanoparticles in gases,” Tech. Phys. 55 (8) 1124–1127 (2010).

    Article  Google Scholar 

  7. R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condens. Matter 20 (18), 153102 (2008).

    Article  ADS  Google Scholar 

  8. V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov, “Molecular dynamics simulation of nanoparticle diffusion in dense fluids,” Microfluid. Nanofluid 11 (4), 501–506 (2011).

    Article  Google Scholar 

  9. V. Ya. Rudyak and S. L. Krasnolutskii, “Dependence of the viscosity of nanofluids on nanoparticle size and material,” Phys. Lett., A 378, 1845–1849 (2014).

    Article  ADS  Google Scholar 

  10. V. Ya. Rudyak and S. L. Krasnolutskii, “Simulation of the nanofluid viscosity coefficient by the molecular dynamics method,” Tech. Phys. 60 (6), 798–804 (2015).

    Article  Google Scholar 

  11. V. Ya. Rudyak and S. L. Krasnolutskii, “The interaction potential of dispersed particles with carrier gas molecules,” in Proc. 21st Int. Symp. on Rarefied Gas Dynamics (Gépadués-Éditions, Toulouse, 1999), vol. 1, pp. 263–270.

    Google Scholar 

  12. V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov, “The interaction potential of nanoparticles,” Dokl. Phys. 57 (1), 33–35 (2012).

    Article  ADS  Google Scholar 

  13. J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Fluids (J. Wiley and Sons, New York, 1954).

    MATH  Google Scholar 

  14. H. Heinz, R. A. Vaia, B. L. Farmer, and R. R. Naik, “Accurate simulation of surfaces and interfaces of facecentered cubic metals using 12-6 and 9-6 Lennard-Jones potentials,” J. Phys. Chem., C 112 (44), 17281–17290 (2008).

    Article  Google Scholar 

  15. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Nauka, Moscow, 1971) [in Russian]

    Google Scholar 

  16. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics. Vol. 6. Hydrodynamics (FIZMATLIT, Moscow, 2001) [in Russian].

    Google Scholar 

  17. V. Ya. Rudyak, A. A. Belkin, D. A. Ivanov, and V. V. Egorov, “The simulation of transport processes using the method of molecular dynamics. Self-discharge accelerator of bodies,” High Temp. 46 (1), 30–39 (2008).

    Article  Google Scholar 

  18. G. E. Norman and V. V. Stegailov, “Molecular dynamics method: The concept and the reality,” Nanostruktury. Mat. Fiz. Modelir. 4 (1), 31–59 (2011).

    Google Scholar 

  19. G. E. Normann and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,” Mat. Modelir. 24 (6), 3–44 (2012).

    MATH  Google Scholar 

  20. A. G. Bashkirov, “Nonequilibrium statistical mechanics of heterogeneous systems,” Theor. Math. Phys. 49 (1), 940–943 (1981).

    Article  MathSciNet  Google Scholar 

  21. G. Nicolis, “On the evaluation of the thermal-diffusion coefficient of heavy particles using a theory of Brownian motion in a nonuniform medium,” J. Chem. Phys. 43, 1110–1113 (1965).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Rudyak.

Additional information

Original Russian Text © V.Ya. Rudyak, S.L. Krasnolutskii, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudyak, V.Y., Krasnolutskii, S.L. Simulation of nanoparticle thermal diffusion in dense gases and fluids by the molecular dynamics method. Atmos Ocean Opt 29, 512–515 (2016). https://doi.org/10.1134/S1024856016060142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016060142

Keywords

Navigation