Skip to main content
Log in

Micromixing via recirculatory flow generated by an oscillatory microplate

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Mixing in micro-environment has been explored in a number of studies. This study presents a unique approach of efficient mixing of two heterogeneous streams via two counter-rotating recirculatory streams induced by in-plane resonance of a rectangular microplate actuated via Lorentz force. The generated time-mean flow structure was interrogated for mixing efficacy over a range of excitation voltage, Reynolds number, and Pèclet number, along with numerical analysis to probe the time-mean flow physics. Results show that the recirculatory flow is generated at the plate’s edges due to local flow non-linearity, characteristic of acoustic streaming. The percentage of mixing, at one device length-scale downstream, attains 93% at a low Reynolds number of 0.0037 (based on mean velocity of 0.078 mm/s and channel height of 50 μm) at 8 V excitation. Further characterization via enhanced diffusivity shows a maximum of 80.7-fold increase. Comparison with other active mixers shows the current device achieves mixing in one of the shortest distances. The proposed approach is robust, tunable to attain desired mixing characteristics and essentially independent of the properties of the fluid medium, which should be useful in a number of microfluidic applications requiring fast mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed D, Mao XL, Shi JJ, Juluri BK, Huang TJ (2009a) A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 9(18):2738–2741

    Article  Google Scholar 

  • Ahmed D, Mao XL, Juluri BK, Huang TJ (2009b) A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid Nanofluid 7(5):727–731

    Article  Google Scholar 

  • Bengtsson M, Laurell T (2004) Ultrasonic agitation in microchannels. Anal Bioanal Chem 378(7):1716–1721

    Article  Google Scholar 

  • Bothe D, Sternich C, Warnecke HJ (2006) Fluid mixing in a T-shaped micro-mixer. Chem Eng Sci 61(9):2950–2958

    Article  Google Scholar 

  • Bottausci F, Cardonne C, Meinhart C, Mezic I (2007) An ultrashort mixing length micromixer: the shear superposition micromixer. Lab Chip 7(3):396–398

    Article  Google Scholar 

  • Bowman JA, Schwartz DT (1998) High Peclet number mass transfer in the acoustic streaming flow between two concentric cylinders. Int J Heat Mass Transf 41(8–9):1065–1074

    Article  MATH  Google Scholar 

  • Chun H, Kim HC, Chung TD (2008) Ultrafast active mixer using polyelectrolytic ion extractor. Lab Chip 8(5):764–771

    Article  Google Scholar 

  • Dyke MV (1982) An album of fluid motion. The parabolic press, California

    Google Scholar 

  • Einstein A (1956) Investigations on the theory of the Brownian movement. Dover Publications, New York

    MATH  Google Scholar 

  • Hessel V, Lowe H, Schonfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60(8–9):2479–2501

    Google Scholar 

  • Holtsmark J, Johnsen I, Sikkeland T, Skavlem S (1954) Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J Acoust Soc Am 26(1):26–39

    Article  MathSciNet  Google Scholar 

  • Howell PB, Mott DR, Golden JP, Ligler FS (2004) Design and evaluation of a Dean vortex-based micromixer. Lab Chip 4(6):663–669

    Article  Google Scholar 

  • Hsiung SK, Lee CH, Lin JL, Lee GB (2007) Active micro-mixers utilizing moving wall structures activated pneumatically by buried side chambers. J Micromech Microeng 17(1):129–138

    Article  Google Scholar 

  • Hsu CH, Folch A (2006) Spatio-temporally-complex concentration profiles using a tunable chaotic micromixer. Appl Phys Lett 89(14):3

    Article  Google Scholar 

  • Johnson TJ, Ross D, Locascio LE (2002) Rapid microfluidic mixing. Anal Chem 74(1):45–51

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1958) Fluid mechanics. Pergamon Press, London

    Google Scholar 

  • Leighton TG (1994) The acoustic bubble. Academic Press, London

    Google Scholar 

  • Lin CM, Lai YS, Liu HP, Wo AM (2008a) Microvortices and recirculating flow generated by an oscillatory microplate for microfluidic applications. Appl Phys Lett 93(13):133503

    Article  Google Scholar 

  • Lin CM, Lai YS, Liu HP, Chen CY, Wo AM (2008b) Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. Anal Chem 80(23):8937–8945

    Article  Google Scholar 

  • Liu RH et al (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9(2):190–197

    Article  Google Scholar 

  • Liu RH, Yang JN, Pindera MZ, Athavale M, Grodzinski P (2002) Bubble-induced acoustic micromixing. Lab Chip 2(3):151–157

    Article  Google Scholar 

  • Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469

    Article  Google Scholar 

  • Lutz BR, Chen J, Schwartz DT (2005) Microscopic steady streaming eddies created around short cylinders in a channel: flow visualization and Stokes layer scaling. Phys Fluids 17(2):023601

    Article  Google Scholar 

  • Marmottant P, Hilgenfeldt S (2003) Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423(6936):153–156

    Article  Google Scholar 

  • Nguyen NT, Wu ZG (2005) Micromixers—a review. J Micromech Microeng 15(2):R1–R16

    Article  Google Scholar 

  • Sasaki N, Kitamori T, Kim HB (2006) AC electroosmotic micromixer for chemical processing in a microchannel. Lab Chip 6(4):550–554

    Article  Google Scholar 

  • Schlichting KGH (1979) Boundary-layer theory. McGraw Hill, New York

    MATH  Google Scholar 

  • Stroock AD et al (2002) Chaotic mixer for microchannels. Science 295(5555):647–651

    Article  Google Scholar 

  • Sudarsan AP, Ugaz VM (2006) Multivortex micromixing. Proc Natl Acad Sci USA 103(19):7228–7233

    Article  Google Scholar 

  • Tung KY, Yang JT (2008) Analysis of a chaotic micromixer by novel methods of particle tracking and FRET. Microfluid Nanofluid 5(6):749–759

    Article  Google Scholar 

  • Wang SS, Jiao ZJ, Huang XY, Yang C, Nguyen NT (2009) Acoustically induced bubbles in a microfluidic channel for mixing enhancement. Microfluid Nanofluid 6(6):847–852

    Article  Google Scholar 

  • Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Yang Z, Goto H, Matsumoto M, Maeda R (2000) Active micromixer for microfluidic systems using lead-zirconate-titanate(PZT)-generated ultrasonic vibration. Electrophoresis 21(1):116–119

    Article  Google Scholar 

  • Yang Z, Matsumoto S, Goto H, Matsumoto M, Maeda R (2001) Ultrasonic micromixer for microfluidic systems. Sens Actuators A Phys 93(3):266–272

    Article  Google Scholar 

Download references

Acknowledgments

Funding from AOARD (grant 094118) is gratefully acknowledged. Partial support for CM Lin is provided by the National Science Council (NSC 99-2120-M-582 002-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Wo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CM., Liu, HP., Lai, YS. et al. Micromixing via recirculatory flow generated by an oscillatory microplate. Microfluid Nanofluid 11, 167–176 (2011). https://doi.org/10.1007/s10404-011-0783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0783-8

Keywords

Navigation