Skip to main content
Log in

Controlled counter-flow motion of magnetic bead chains rolling along microchannels

  • Brief Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We demonstrate controlled transport of superparamagnetic beads in the opposite direction of a laminar flow. A permanent magnet assembles 200 nm magnetic particles into about 200 μm long bead chains that are aligned in parallel to the magnetic field lines. Due to a magnetic field gradient, the bead chains are attracted towards the wall of a microfluidic channel. A rotation of the permanent magnet results in a rotation of the bead chains in the opposite direction to the magnet. Due to friction on the surface, the bead chains roll along the channel wall, even in counter-flow direction, up to at a maximum counter-flow velocity of 8 mm s−1. Based on this approach, magnetic beads can be accurately manoeuvred within microfluidic channels. This counter-flow motion can be efficiently be used in Lab-on-a-Chip systems, e.g. for implementing washing steps in DNA purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437(7060):862–865

    Article  Google Scholar 

  • Egatz-Gomez A, Melle S, Garcia AA, Lindsay SA, Marquez M, Dominguez-Garcia P, Rubio MA, Picraux ST, Taraci JL, Clement T, Yang D, Hayes MA, Gust D (2006) Discrete magnetic microfluidics. Appl Phys Lett 89(3):034106

    Article  Google Scholar 

  • Franke T, Schmid L, Weitz DA, Wixforth A (2009) Magneto-mechanical mixing and manipulation of picoliter volumes in vesicles. Lab Chip 9(19):2831–2835

    Article  Google Scholar 

  • Furlani EP, Sahoo Y, Ng KC, Wortman JC, Monk TE (2007) A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed Microdevices 9(4):451–463

    Article  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110

    Article  Google Scholar 

  • Hatch A, Kamholz AE, Holman G, Yager P, Bohringer KF (2001) A ferrofluidic magnetic micropump. J Microelectromech Syst 10(2):215–221

    Article  Google Scholar 

  • Karle M, Miwa J, Czilwik G, Auwärter V, Roth G, Zengerle R, von Stetten F (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip. doi: 10.1039/C0LC00129E

  • Lacharme F, Vandevyver C, Gijs MAM (2008) Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains. Anal Chem 80(8):2905–2910

    Article  Google Scholar 

  • Lee SH, van Noort D, Lee JY, Zhang BT, Park TH (2009) Effective mixing in a microfluidic chip using magnetic particles. Lab Chip 9(3):479–482

    Article  Google Scholar 

  • Lehmann U, Vandevyver C, Parashar VK, Gijs MAM (2006) Droplet-based DNA purification in a magnetic lab-on-a-chip. Angew Chem Int Ed 45(19):3062–3067

    Article  Google Scholar 

  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182

    Article  Google Scholar 

  • Morimoto H, Ukai T, Nagaoka Y, Grobert N, Maekawa T (2008) Tumbling motion of magnetic particles on a magnetic substrate induced by a rotational magnetic field. Phys Rev E 78(2):021403

    Article  Google Scholar 

  • Ohashi T, Kuyama H, Hanafusa N, Togawa Y (2007) A simple device using magnetic transportation for droplet-based PCR. Biomed Microdevices 9(5):695–702

    Article  Google Scholar 

  • Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38

    Article  Google Scholar 

  • Petousis I, Homburg E, Derks R, Dietzel A (2007) Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields. Lab Chip 7(12):1746–1751

    Article  Google Scholar 

  • Satarkar NS, Hilt JZ (2008) Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130(3):246–251

    Article  Google Scholar 

  • Sing CE, Schmid L, Schneider MF, Franke T, Alexander-Katz A (2010) Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc Natl Acad Sci USA 107(2):535–540

    Article  Google Scholar 

  • Terray A, Oakey J, Marr DWM (2002) Microfluidic control using colloidal devices. Science 296(5574):1841–1844

    Article  Google Scholar 

  • Tierno P, Golestanian R, Pagonabarraga I, Sagues F (2008) Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys Rev Lett 101(21):218–304

    Article  Google Scholar 

Download references

Acknowledgments

This study is funded by the German Federal Ministry of Education and Research (16SV3528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Karle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karle, M., Wöhrle, J., Miwa, J. et al. Controlled counter-flow motion of magnetic bead chains rolling along microchannels. Microfluid Nanofluid 10, 935–939 (2011). https://doi.org/10.1007/s10404-010-0727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0727-8

Keywords

Navigation