Skip to main content
Log in

Numerical study on gas–liquid nano-flows with pseudo-particle modeling and soft-particle molecular dynamics simulation

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We couple pseudo-particle modeling (PPM, Ge and Li in Chem Eng Sci 58(8):1565–1585, 2003), a variant of hard-particle molecular dynamics, with standard soft-particle molecular dynamics (MD) to study an idealized gas–liquid flow in nano-channels. The coupling helps to keep sharp contrast between gas and liquid behaviors and the simulations conducted provide a reference frame for exploring more complex and realistic gas–liquid nano-flows. The qualitative nature and general flow patterns of the flow under such extreme conditions are found to be consistent with its macro-scale counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. We have found no general drag coefficient for two-dimensional deformable moving object thus far, and we understand that, according to Huang and Feng (1995) and Chakraborty et al. (2004), the drag force on cylinder is also strongly influenced by the presence of confining walls; but, the drag coefficient for sphere consists with the circular cylinder to an acceptable accuracy in the Reynolds number range of 100 to 101. Therefore, this C D is used as a rough estimate.

Abbreviations

Ca :

capillary number (−)

F, F, f :

force (kg m s−2)

g :

gravitational acceleration (m s−2)

H :

height (m)

k B :

Boltzmann constant (k B = 1.38 × 10−23 kg m2 s−2 K−1)

L s :

slip length (m)

m :

mass (kg)

N :

number (−)

n :

number density (m−dim*)

P :

position (m)

P :

pressure (kg m2−dim s−2)

R :

radius (m)

Re :

Reynolds number (−)

r :

distance (m)

s :

displacement (m)

T :

temperature (K)

t :

time (s)

U, u, V, v :

velocity (m s−1)

W :

width (m)

w :

mass fraction (−)

x :

coordinate, molar fraction (−)

y :

coordinate

Z :

compressibility factor (−)

b:

bubble

c:

critical

ct:

control temperature

D:

drag

g:

gas phase

l:

liquid phase

m:

mean value

s:

surface, interfacial

w:

wall

Δ:

increment

δ :

Kronecker delta function

ɛ, ϕ, Ψ s, ζ :

potential energy (kg m2 s−2)

η :

packing fraction (−)

ρ :

mass density (kg m−dim)

μ :

dynamic viscosity (kg m2-dim s−1)

ν :

kinematic viscosity (m2 s−1)

τ :

shear stress (kg m2-dim s−2)

τ l :

characteristic time of liquid molecule (s)

*dim = 2 or 3:

the dimensionality of the simulated system, for the two- or three-dimensional system

References

  • Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  • Backer JA, Lowe CP, Hoefsloot HCJ, Iedema PD (2005) Poiseuille flow to measure the viscosity of particle model fluids. J Chem Phys 122(15):154503–154506

    Article  Google Scholar 

  • Barker JA, Henderson D, Abraham FF (1981) Phase diagram of the two-dimensional Lennard–Jones system: evidence for first-order transitions. Phys A Stat Theor Phys 106(1, 2):226–238

    Article  Google Scholar 

  • Chakraborty J, Verma N, Chhabra RP (2004) Wall effects in flow past a circular cylinder in a plane channel: a numerical study. Chem Eng Process 43(12):1529–1537

    Article  Google Scholar 

  • Chobana ER, Markoski LJ, Wieckowski A, Kenis PJA (2004) Microfluidic fuel cell based on laminar flow. J Power Sources 128:54–60

    Article  Google Scholar 

  • Denniston C, Robbins MO (2001) Molecular and continuum boundary conditions for a Miscible binary fluid. Phys Rev Lett 87(17):178302

    Article  Google Scholar 

  • Ellisab JS, Thompson M (2004) Slip and coupling phenomena at the liquid–solid interface. Phys Chem Chem Phys 6:4928–4938

    Article  Google Scholar 

  • Frenkel D, Smit B (1996) Understanding molecular simulation: from algorithms to applications. Academic Press, Orlando

    MATH  Google Scholar 

  • Gad-el-Hak M (1999) The fluid mechanics of microdevices–the freeman scholar lecture. J Fluids Eng 121:5–33

    Article  Google Scholar 

  • Gad-el-Hak M (2005) Liquids: the holy grail of microfluidic modeling. Phys Fluids 17:100612

    Article  Google Scholar 

  • Ge W (1998) Multi-scale simulation of Fluidization. Heat Energy Engineering, Harbin Institute of Technology, Ph.D., 125

  • Ge W, Li J (2003) Macro-scale phenomena reproduced in microscopic systems: pseudo-particle modeling of fluidization. Chem Eng Sci 58(8):1565–1585

    Article  MathSciNet  Google Scholar 

  • Ge W, Ma J, Zhang J, Tang D, Chen F, Wang X, Guo L, Li J (2005) Particles methods for multi-scale simulaton of complex flows. Chin Sci Bull 50(11):1057–1069

    Article  Google Scholar 

  • Gogotsi Y, Libera JA, Guvenc-Yazicioglu A, Megaridis CM (2001) In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl Phys Lett 79(7):1021–1023

    Article  Google Scholar 

  • Gogotsi Y, Naguib N, Libera JA (2002) In situ chemical experiments in carbon nanotubes. Chem Phys Lett 365:354–360

    Article  Google Scholar 

  • Hannon L, Lie GC, Clementi E (1986) Molecular dynamics simulation of channel flow. Phys Lett A 119(4):174–177

    Article  Google Scholar 

  • Ho C-M, Tai Y-C (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech 30:579–612

    Article  Google Scholar 

  • Huang PY, Feng J (1995) Wall effects on the flow of viscoelastic fluids around a circular cylinder. J Non-Newtonian Fluid Mech 60(2):179–198

    Article  Google Scholar 

  • Jensen KF (1999) Microchemical systems: status, challenges, and opportunities. AIChE J 45(10):2051–2054

    Article  Google Scholar 

  • Kawaji M, Chung PM-Y (2004) Adiabatic gas–liquid flow in microchannels. Microscale Thermophys Eng 8:239–257

    Article  Google Scholar 

  • Kotsalis EM, Walther JH, Koumoutsakos P (2004) Multiphase water flow inside carbon nanotubes. Int J Multiphase Flow 30:995–1010

    Article  MATH  Google Scholar 

  • Lamb H (1932) Hydrodynamics. Dover, New York

    MATH  Google Scholar 

  • Landau LD, Lifshitz EM (1987) Fluid Mechanics. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Liem SY, Brown D, Clarke JHR (1992) Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. Phys Rev A 45(6):3706–3713

    Article  Google Scholar 

  • Marin M, Risso D, Cordero P (1993) Efficient algorithms for many-body hard particle molecular dynamics. J Comput Phys 109:306–317

    Article  MATH  Google Scholar 

  • Matsumoto M, Matsuura T (2004) Molecular dynamics simulation of a rising bubble. Mol Simul 30(13–15):853–859

    Article  Google Scholar 

  • Peters GH, Eggebrecht J (1995) Observation of droplet growth and coalescence in phase-separating Lennard–Jones fluids. J Phys Chem 99(32):12335–12340

    Article  Google Scholar 

  • Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  • Sun M, Ebner C (1992) Molecular-dynamics simulation of compressible fluid flow in two-dimensional channels. Phys Rev A 46(8):4813–4819

    Article  Google Scholar 

  • Sushko N, Cieplak M (2001) Motion of grains, droplets, and bubbles in fluid-filled nanopores. Phys Rev E 64(21):021061–021008

    Google Scholar 

  • Thompson PA, Troia SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360–362

    Article  Google Scholar 

  • Travis KP, Todd BD, Evans DJ (1997) Departure from Navier–Stokes hydrodynamics in confined liquids. Phys Rev E 55(4):4288–4295

    Article  Google Scholar 

  • Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, Sadowski DL (1999) Gas–liquid two-phase flow in microchannels Part I: two-phase flow patterns. Int J Multiph Flow 25(3):377–394

    Article  MATH  Google Scholar 

  • Wang L, Ge W, Chen F (2007) Pseudo-particle modeling for gas flow in microchannels. Chin Sci Bull 52(4):450–455

    Article  Google Scholar 

  • Xu JL, Zhou ZQ (2004) Molecular dynamics simulation of liquid argon flow at platinum surfaces. Heat Mass Transf 40:859–869

    Article  MathSciNet  Google Scholar 

  • Xu JL, Zhou ZQ, Xu XD (2004) Molecular dynamics simulation of micro-Poiseuille flow for liquid argon in nanoscale. Int J Numer Methods Heat Fluid Flow 14(5/6):664–688

    Article  MATH  Google Scholar 

  • Yang ZL, Palm B, Sehgal BR (2002) Numerical simulation of bubbly two-phase flow in a narrow channel. Int J Heat Mass Transf 45:631–639

    Article  MATH  Google Scholar 

  • Yarin AL, Yazicioglu AG, Megaridisb CM (2005) Theoretical and experimental investigation of aqueous liquids contained in carbon nanotubes. J Appl Phys 97:124309–124313

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China under the grant nos. 20336040, 20490201 and 20221603, and the Chinese Academy of Sciences under the grant KJCX-SW-L08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Ge, W., Wang, L. et al. Numerical study on gas–liquid nano-flows with pseudo-particle modeling and soft-particle molecular dynamics simulation. Microfluid Nanofluid 5, 639–653 (2008). https://doi.org/10.1007/s10404-008-0280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0280-x

Keywords

Navigation