Skip to main content

Advertisement

Log in

Investigation of flow boiling in narrow channels by thermographic measurement of local wall temperatures

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Flow boiling heat transfer characteristics of water and hydrocarbons in mini and microchannels are experimentally studied. Two different test section geometries are employed; a circular channel with a hydraulic diameter of 1,500 μm, and rectangular channels with height values of 300–700 μm and a width of 10 mm. In both facilities, the fluid flows upwards and the test sections, made of the nickel alloy Inconel 600, are directly electrically heated. Thus, evaporation takes place under the defined boundary condition of constant heat flux. Mass fluxes between 25 kg/m2 s and 350 kg/m2 s and heat fluxes from 20 kW/m2 to 350 kW/m2 at an inlet pressure of 0.3 MPa are examined. Infrared (IR) thermography is applied to scan the outer wall temperatures. These allow the identification of different boiling regions, boiling mechanisms, and the determination of the local heat transfer coefficients (HTC). Measurements are carried out in initial, saturated, and post-dryout boiling regions. The experimental results in the region of saturated boiling are compared with currently available correlations and with a physically founded model developed for convective boiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Projected area of the smooth phase boundary, m2

A W :

Real area of the wavy phase boundary, m2

b :

Laplace constant, \( b = {\sqrt {\sigma \mathord{\left/ {\vphantom {\sigma {{\left( {g{\left( {{\rho }\ifmmode{'}\else$'$\fi - {\rho }\ifmmode{''}\else$''$\fi} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {g{\left( {{\rho }\ifmmode{'}\else$'$\fi - {\rho }\ifmmode{''}\else$''$\fi} \right)}} \right)}}} }, \) m

Bo :

Boiling number, \( Bo = {\ifmmode\expandafter\dot\else\expandafter\.\fi{q}} \mathord{\left/ {\vphantom {{\ifmmode\expandafter\dot\else\expandafter\.\fi{q}} {{\left( {\ifmmode\expandafter\dot\else\expandafter\.\fi{m} \cdot \Delta h_{v} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {\ifmmode\expandafter\dot\else\expandafter\.\fi{m} \cdot \Delta h_{v} } \right)}}, \)

C :

Parameter, Eq. 7

Co :

Convection number, \( Co = {\left( {{\rho _{G} } \mathord{\left/ {\vphantom {{\rho _{G} } {\rho _{{\text{l}}} }}} \right. \kern-\nulldelimiterspace} {\rho _{{\text{l}}} }} \right)}^{{0.5}} {\left( {{{\left( {1 - \ifmmode\expandafter\dot\else\expandafter\.\fi{x}} \right)}} \mathord{\left/ {\vphantom {{{\left( {1 - \ifmmode\expandafter\dot\else\expandafter\.\fi{x}} \right)}} {\ifmmode\expandafter\dot\else\expandafter\.\fi{x}}}} \right. \kern-\nulldelimiterspace} {\ifmmode\expandafter\dot\else\expandafter\.\fi{x}}} \right)}^{{0.8}} , \)

D :

Diameter, m

F fl :

Fluid–surface parameter recommended by Kandlikar and Balasubramanian (2003)

g :

Acceleration due to gravity, m/s2

H :

Height, m

Δh v :

Latent heat of vaporization, J/kg

L :

Length, m

l ch :

Hydraulic diameter, m

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{m} \) :

Mass flux, kg/(m2 s)

N b :

Boiling number, \( N_{b} = {\ifmmode\expandafter\dot\else\expandafter\.\fi{q}} \mathord{\left/ {\vphantom {{\ifmmode\expandafter\dot\else\expandafter\.\fi{q}} {\ifmmode\expandafter\dot\else\expandafter\.\fi{m}\Delta h_{{\text{v}}} }}} \right. \kern-\nulldelimiterspace} {\ifmmode\expandafter\dot\else\expandafter\.\fi{m}\Delta h_{{\text{v}}} }, \), –

p :

Pressure, Pa

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{q} \) :

Heat flux, W/m2

r :

Radial coordinate, m

R :

R

adius, m

T :

Temperature, K

s :

Thickness of the channel wall, m

W :

Width, m

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{x} \) :

Vapor quality, –

\( \ifmmode\expandafter\tilde\else\expandafter\~\fi{x}_{1} \) :

Mole fraction of the more volatile component, –

z :

Axial coordinate, m

α :

Heat transfer coefficient, W/(m2 K)

δ :

Film thickness, m

ɛ :

Emissivity, –

η :

Dynamic viscosity, Ns/m2

λ :

Heat conductivity, W/(mK)

ρ :

Density, kg/m3

σ :

Surface tension, N/m

B :

Reference value of α

cb:

Convective boiling

dry:

D

ryout

eff:

Effective value

in:

Inner

ini:

Reference length in the initial region

l:

Liquid

nb:

Nucleate boiling

out:

Outer

S:

Saturated

v:

Vapor

W:

Wall

References

  • Hapke I, Boye H, Schmidt J (2000) Onset of nucleate boiling in minichannels. Int J Therm Sci 39:505–513

    Article  Google Scholar 

  • Hapke I, Boye H, Schmidt J (2002) Flow boiling of water and n-heptane in micro channels. Microscale Thermophys Eng 6:99–115

    Article  Google Scholar 

  • Kandlikar SG (2002) Two-phase flow patterns, pressure drop, and heat transfer during boiling in minichannel flow passages of compact evaporators. Heat Transfer Eng 23:5–23

    Article  Google Scholar 

  • Kandlikar SG, Balasubramanian P (2003) Extending the applicability of the flow boiling correlation to low Reynolds number flows in microchannels. In: Proceedings of the 1st ASME international conference on microchannels and minichannels, Rochester, New York, April 2003

  • Moriyama K, Inoue A (1992) The thermohydraulic characteristics of two-phase flow in extremely narrow channels. Heat Transfer Jpn Res 21(8):838–856

    Google Scholar 

  • Niederkrüger M (1991) Strömungssieden von reinen Stoffen und binären zeotropen Gemischen im waagerechten Rohr bei mittleren und hohen Drücken. VDI, Fortschrittbericht Nr. 245, Reihe 3

  • Palm B (2000) Heat transfer in microchannels. In: Proceedings of the international conference on heat transfer and transport phenomena in microscale, Banff, Canada, October 2000, pp 54–65

  • Steiner D, Taborek J (1992) Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transfer Eng 3(2):43–69

    Article  Google Scholar 

  • Sumith B, Kaminaga F, Matsumura K (2003) Saturated flow boiling of water in a vertical small diameter tube. Exp Thermal Fluid Sci 27:789–801

    Article  Google Scholar 

  • VDI-Waermeatlas (2002) Chapter Hbb, 9 Auflage, Springer, Berlin Heidelberg New York

  • Wadekar VV (2002) Compact heat exchangers for phase change. Int J Heat Exchangers 3:169–200

    Google Scholar 

  • Watel B, Thonon B (2001) A correlation for nucleate and convective flow boiling in a compact plate-fin heat-exchanger with perforated fins. Trends Heat Mass Momentum Transfer 7:81–103

    Google Scholar 

  • Yan YY, Lin TF (1998) Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe. Int J Heat Mass Transfer 41:4183–4194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, M.C., Boye, H., Hapke, I. et al. Investigation of flow boiling in narrow channels by thermographic measurement of local wall temperatures. Microfluid Nanofluid 2, 1–11 (2006). https://doi.org/10.1007/s10404-004-0030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-004-0030-7

Keywords

Navigation