Skip to main content
Log in

Relationship between upper limb peripheral artery stiffness using the radial artery and atherosclerotic parameters

  • Original Article
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Purpose

A new method has been developed for evaluating arterial stiffness using transcutaneous and high-frequency ultrasound. There may be a difference in the clinical significance of peripheral arteries, such as the radial artery (a muscular property), and other medium/large-sized arteries (an elastic property). The aim of this study was to determine the relationship between upper limb peripheral arterial stiffness (ULPAS) using the new method for the radial artery and atherosclerotic parameters in comparison with carotid intima-media thickness (IMT) and cardio-ankle vascular index (CAVI) in a healthy population and a diseased population with hypertension (HT) and diabetes mellitus (DM).

Methods

Forty-four apparently healthy individuals (mean age = 26.3 years, men/women = 14/30), 45 patients with drug-treated HT (mean age = 55.3 years, men/women = 17/28), and 37 patients with drug-treated DM (mean age = 55.2 years, men/women = 21/16) were investigated. Body mass index, systolic blood pressure (SBP), diastolic blood pressure (DBP), CAVI, IMT, ultrasonographically measured ULPAS, blood lipid/glucose-related parameters, and C-reactive protein (CRP) were all determined.

Results

Among the healthy subjects, ULPAS showed a significantly positive correlation with SBP and CRP. ULPAS showed a different correlation pattern with atherosclerotic parameters from that of IMT and CAVI. The HT subjects had significantly higher ULPAS levels than those with DM. In this diseased population, ULPAS showed a significant positive correlation with SBP and DBP, as well as a significant negative correlation with glucose.

Conclusion

These results suggest that ULPAS may provide new information in association with some atherosclerotic conditions as a unique index different from IMT and CAVI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. Preventing chronic disease: a vital investment. Geneva: WHO; 2005.

    Google Scholar 

  2. Salomaa V, Riley W, Kark JD, Nardo C, Folsom AR. Non-insulin dependent diabetes mellitus and fasting glucose and insulin concentrations are associated with arterial stiffness indexes: the ARIC study. Circulation. 1995;91:1432–43.

    PubMed  CAS  Google Scholar 

  3. Lund-Johansson P. Haemodynamics in essential hypertension. Clin Sci. 1980;59:343–54.

    Google Scholar 

  4. Hsueh WA, Anderson PW. Hypertension, the endothelial cell, and the vascular complications of diabetes mellitus. Hypertension. 1992;20:253–63.

    PubMed  CAS  Google Scholar 

  5. Shirai K, Utino J, Otsuka K, Masanobu T. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb. 2006;13:101–7.

    PubMed  Google Scholar 

  6. Nakamura K, Tomaru T, Yamamura S, et al. Cardio-ankle vascular index is a candidate predictor of coronary atherosclerosis. Circ J. 2008;72:598–604.

    Article  PubMed  Google Scholar 

  7. Staub D, Meyerhans A, Bundi B, et al. Prediction of cardiovascular morbidity and mortality: comparison of the internal carotid artery resistive index with the common carotid artery intima-media thickness. Stroke. 2006;37:800–5.

    Article  PubMed  Google Scholar 

  8. Dierk H, Schiffrin Ernesto L. Endothelial dysfunction. J Am Soc Nephrol. 2004;15:1983–92.

    Article  Google Scholar 

  9. Kanai K, Hasegawa H, Ichiki M, et al. Elasticity imaging of atheroma with transcutaneous ultrasound. Circulation. 2003;107:3018–20.

    Article  PubMed  Google Scholar 

  10. Tsuzuki K, Hasegawa H, Ichiki M, Tezuka F, Kanai H. Optimal region-of-interest settings for tissue characterization based on ultrasonic elasticity imaging. Ultrasound Med Biol. 2008;34:573–85.

    Article  PubMed  Google Scholar 

  11. Hasegawa H, Kanai H, Ichiki M, Tezuka F. Tissue structure of arterial wall revealed with elasticity imaging. J Med Ultrason. 2007;34:73–4.

    Article  Google Scholar 

  12. Ikeshita K, Hasegawa H, Kanai H. Ultrasonic measurement of transient change in stress–strain property of radial arterial wall caused by endothelium-dependent vasodilation. Jpn J Appl Phys. 2008;47:4165–9.

    Article  CAS  Google Scholar 

  13. Yamagishi T, Kato M, Koiwa Y, Hasegawa H, Kanai H. Usefulness of measurement of carotid arterial elasticity distribution in detection of early-stage atherosclerotic lesions caused by cigarette smoking. J Med Ultrason. 2006;33:203–10.

    Article  Google Scholar 

  14. Okimoto H, Ishigaki Y, Koiwa Y, et al. A novel method for evaluating human carotid artery elasticity: possible detection of early stage atherosclerosis in subjects with type 2 diabetes. Atherosclerosis. 2008;196:391–7.

    Article  PubMed  CAS  Google Scholar 

  15. Taddie S, Virdus A, Mattei P, et al. Defective l-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation. 1996;94:1298–303.

    Google Scholar 

  16. Rizzoni D, Porteri E, Guelfi D, et al. Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation. 2001;103:1238–44.

    PubMed  CAS  Google Scholar 

  17. Tao J, Tu C, Wang Y, et al. Impaired endothelium-dependent vasodilation and arterial elasticity in patients with coronary artery disease. J Allergy Clin Immunol. 2005;33:150–2.

    Google Scholar 

  18. Kaneko T, Hasegawa H, Kanai H. Ultrasonic measurement of change in elasticity due to endothelium dependent relaxation response by accurate detection of artery-wall boundary. Jpn J Appl Phys. 2007;46:4881–8.

    Article  CAS  Google Scholar 

  19. WHO expert consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies Lancet 2004;363:157–63.

  20. Chalmers J. Classification of hypertension according to WHO/ISH. J Hypertens. 1999;17:151–85.

    Google Scholar 

  21. Hata Y, Mabuchi H, Saito Y, et al. Report of the Japan atherosclerosis society (JAS) guideline for diagnosis and treatment of hyperlipidemia in Japanese adults. J Atheroscler Thromb. 2002;9:1–27.

    PubMed  Google Scholar 

  22. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2004;27:S5–10.

    Article  Google Scholar 

  23. Agabiti-Rosie E. Structural and functional changes of the microcirculation in hypertension: influence of pharmacological therapy. Drugs. 2003;63:19–29.

    Article  Google Scholar 

  24. Hata M, Sezai A, Niino T, et al. Vascular protecting effect of angiotensin receptor blocker (ARB) on the radial artery graft. Ann Thorac Cardiovasc Surg. 2008;14:25–8.

    PubMed  Google Scholar 

  25. Friedwald WT, Levy RJ, Fredrickson D. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    Google Scholar 

  26. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9.

    Article  PubMed  CAS  Google Scholar 

  28. Ferri C, Croce G, Cofini V, Berardinis GD, Grassi D, Casale R, et al. C-reactive protein: interaction with the vascular endothelium and possible role in human atherosclerosis. Curr Pharm Des. 2007;13:1631–45.

    Article  PubMed  CAS  Google Scholar 

  29. Venugopal SK, Devaraj S, Jialal I. Effect of C-reactive protein on vascular cells: evidence for a proinflammatory, proatherogenic role. Curr Opin Nephrol Hypertens. 2005;14:33–7.

    Article  PubMed  CAS  Google Scholar 

  30. Ikonomidis I, Stamatelopoulos K, Lekakis J, Vamvakou GD, Kremastinos DT. Inflammatory and non-invasive vascular markers: the multimarker approach for risk stratification in coronary artery disease. Atherosclerosis. 2008;199:3–11.

    Article  PubMed  CAS  Google Scholar 

  31. Hattori Y, Matsumura M, Kasai K. Vascular smooth muscle cell activation by C-reactive protein. Cardiovasc Res. 2003;58:186–95.

    Article  PubMed  CAS  Google Scholar 

  32. McVeign GE, Allen PB, Morgan DR, Hanratty CG, Silke B. Nitric oxide modulation of blood vessel tone identified by arterial waveform analysis. Clin Sci. 2001;100:387–93.

    Article  Google Scholar 

  33. Duprez DA, Somasundaram PE, Sigurdsson G, Hoke L, Florea N, Cohn JN. Relationship between C-reactive protein and arterial stiffness in an asymptomatic population. J Hum Hypertens. 2005;19:515–9.

    Article  PubMed  CAS  Google Scholar 

  34. Schiffrin EL. Reactivity of small blood vessels in hypertension: relation with structural changes. State of the art lecture. Hypertension 1992;19:SII 1–9

    Google Scholar 

  35. Spieker LE, Flammer AJ, Lüscher TF. The vascular endothelium in hypertension. Handb Exp Pharmacol 2006;(176):249–283

  36. Agewall S, Douhty RN, Bagg W, Whalley GA, Braatvendt G, Sharpe N. Comparison of ultrasound assessment of flow-mediated dilation in the radial and brachial artery with upper and forearm cut positions. Clin Physiol. 2001;21:9–14.

    Article  PubMed  CAS  Google Scholar 

  37. Aalkaer C, Heagerty AM, Peterson KK, et al. Evidence for increased media thickness, increased neuronal amine uptake and decreased excitation-contraction coupling in isolated resistance vessels from essential hypertensives. Circ Res. 1987;61:181–6.

    Google Scholar 

  38. Stephens N, Heagerty AM. The sympathetic nervous system and small artery neuroeffector function in hypertension. Vase Med Review. 1994;5:75–93.

    Google Scholar 

  39. Cameron JD, Cruickshank JK. Glucose, insulin, diabetes and mechanisms of arterial dysfunction. Clin Exp Pharmacol Physiol. 2007;34:677–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by a grant-in-aid from the Japanese Society of Laboratory Medicine Fund for the Promotion of Scientific Research, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Kotani.

About this article

Cite this article

Uurtuya, S., Kotani, K., Taniguchi, N. et al. Relationship between upper limb peripheral artery stiffness using the radial artery and atherosclerotic parameters. J Med Ultrasonics 36, 129–135 (2009). https://doi.org/10.1007/s10396-009-0217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-009-0217-3

Keywords

Navigation