Skip to main content

Advertisement

Log in

Accuracy of ultrasound vs. Fourier-domain optic biometry for measuring preoperative axial length in cases of rhegmatogenous retinal detachment

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To identify a method for accurately measuring preoperative axial length (AL) in cases of rhegmatogenous retinal detachment (RRD).

Study design

Retrospective study.

Methods

This retrospective study included 83 eyes of 83 patients who underwent vitrectomy for RRD and had both preoperative and postoperative data for AL. Preoperative AL measurements for the affected eye were obtained using ultrasound (aUS-AL) and compared with those for affected and fellow eyes measured using optical biometry (aOB-AL and fOB-AL, respectively). Absolute differences between preoperative aUS-AL, aOB-AL, or fOB-AL measurements and postoperative AL (aPost-AL) were examined.

Results

In the 41 eyes without macular detachment, the absolute difference between aOB-AL and aPost-AL (0.06±0.07 mm) was significantly smaller than between aUS-AL and aPost-AL (0.21±0.18 mm) and that between fOB-AL and aPost-AL (0.29±0.35 mm) (P = 0.017 and P < 0.001, respectively). In the 42 eyes with macular detachment, the absolute difference between aOB-AL and aPost-AL (1.22±2.40 mm) was significantly larger than between aUS-AL and aPost-AL (0.24±0.24 mm) and between fOB-AL and aPost-AL (0.35±0.49 mm) (P = 0.006, P = 0.016, respectively).

Conclusion

The current findings suggest that aOB-AL is more accurate than aUS-AL or fOB-AL in cases of RRD without macular detachment, while aUS-AL or fOB-AL is more accurate than aOB-AL in cases with macular detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Caiado RR, Magalhães O, Badaró E, Maia A, Novais EA, Stefanini FR, et al. Effect of lens status in the surgical success of 23-gauge primary vitrectomy for the management of rhegmatogenous retinal detachment. Retina. 2015;35:326–33.

    Article  PubMed  Google Scholar 

  2. Ogura Y, Takanashi T, Ishigooka H, Ogino N. Quantitative analysis of lens changes after vitrectomy by fluorophotometry. Am J Ophthalmol. 1991;111:179–83.

    Article  CAS  PubMed  Google Scholar 

  3. Thompson JT, Sjaarda RN, Murphy RP. Progression of nuclear sclerosis and long-term visual results of vitrectomy with transforming growth factor beta-2 for macular holes. Am J Ophthalmol. 1995;119:48–54.

    Article  CAS  PubMed  Google Scholar 

  4. Demetriades AM, Gottsch JD, Thomsen R, Azab A, Stark WJ, Campochiaro PA, et al. Combined phacoemulsification, intraocular lens implantation, and vitrectomy for eyes with coexisting cataract and vitreoretinal pathology. Am J Ophthalmol. 2003;135:291–6.

    Article  PubMed  Google Scholar 

  5. Scharwey K, Pavlovic S, Jacobi KW. Combined clear corneal phacoemulsification, vitreoretinal surgery, and intraocular lens implantation. J Cataract Refract Surg. 1999;25:693–8.

    Article  CAS  PubMed  Google Scholar 

  6. Rahman R, Kolb S, Bong CX, Stephenson J. Accuracy of user-adjusted axial length measurements with optical biometry in eyes having combined phacovitrectomy for macular-off rhegmatogenous retinal detachment. J Cataract Refract Surg. 2016;42:1009–14.

    Article  PubMed  Google Scholar 

  7. Tan A, Bertrand-Boiché M, Angioi-Duprez K, Berrod JP, Conart JB. Outcomes of combined phacoemulsification and pars plana vitrectomy for rhegmatogenous retinal detachment: a comparative study. Retina. 2020;41:68–74.

    Article  Google Scholar 

  8. Rahman R, Bong CX, Stephenson J. Accuracy of intraocular lens power estimation in eyes having phacovitrectomy for rhegmatogenous retinal detachment. Retina. 2014;34:1415–20.

    Article  PubMed  Google Scholar 

  9. Pongsachareonnont P, Tangjanyatam S. Accuracy of axial length measurements obtained by optical biometry and acoustic biometry in rhegmatogenous retinal detachment: a prospective study. Clin Ophthalmol. 2018;12:973–80.

    Article  PubMed  PubMed Central  Google Scholar 

  10. El-Khayat AR, Brent AJ, Peart SAM, Chaudhuri PR. Accuracy of intraocular lens calculations based on fellow-eye biometry for phacovitrectomy for macula-off rhegmatogenous retinal detachments. Eye. 2019;33:1756–61.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim YK, Woo SJ, Hyon JY, Ahn J, Park KH. Refractive outcomes of combined phacovitrectomy and delayed cataract surgery in retinal detachment. Can J Ophthalmol. 2015;50:360–6.

    Article  PubMed  Google Scholar 

  12. Liu R, Li H, Li Q. Differences in axial length and IOL power based on alternative a-scan or fellow-eye biometry in macula-off rhegmatogenous retinal detachment eyes. Ophthalmol Ther. 2021;11:347–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shiraki N, Wakabayashi T, Sakaguchi H, Nishida K. Effect of gas tamponade on the intraocular lens position and refractive error after phacovitrectomy a swept-source anterior segment OCT analysis. Ophthalmology. 2020;127:511–5.

    Article  PubMed  Google Scholar 

  14. Shiraki N, Wakabayashi T, Sakaguchi H, Nishida K. Optical biometry-based intraocular lens calculation and refractive outcomes after phacovitrectomy for rhegmatogenous retinal detachment and epiretinal membrane. Sci Rep. 2018;8:11319.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang C, Zhang T, Liu J, Ji Q, Tan R. Changes in axial length, central cornea thickness, and anterior chamber depth after rhegmatogenous retinal detachment repair. BMC Ophthalmol. 2016;16:121.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim M, Kim HE, Lee DH, Koh HJ, Lee SC, Kim SS. Intraocular lens power estimation in combined phacoemulsification and pars plana vitrectomy in eyes with epiretinal membranes: a case-control study. Yonsei Med J. 2015;56:805–11.

    Article  PubMed  PubMed Central  Google Scholar 

  17. McAlinden C, Wang Q, Gao R, Zhao W, Yu A, Li Y, et al. Axial length measurement failure rates with biometers using swept-source optical coherence tomography compared to partial-coherence interferometry and optical low-coherence interferometry. Am J Ophthalmol. 2017;173:64–9.

    Article  PubMed  Google Scholar 

  18. Huang J, Chen H, Li Y, Chen Z, Gao R, Yu J, et al. Comprehensive comparison of axial length measurement with three swept-source OCT-based biometers and partial coherence interferometry. J Refract Surg. 2019;35:115–20.

    Article  PubMed  Google Scholar 

  19. Tamaoki A, Kojima T, Hasegawa A, Yamamoto M, Kaga T, Tanaka K, et al. Evaluation of axial length measurement using enhanced retina visualization mode of the swept-source optical coherence tomography biometer in dense cataract. Ophthalmic Res. 2021;64:595–603.

    Article  PubMed  Google Scholar 

  20. Hitzenberger CK. Optical measurement of the axial eye length by laser Doppler interferometry. Invest Ophth Vis Sci. 1991;32:616–24.

    CAS  Google Scholar 

  21. Vogel A, Dick HB, Krummenauer F. Reproducibility of optical biometry using partial coherence interferometry: intraobserver and interobserver reliability. J Cataract Refract Surg. 2001;27:1961–8.

    Article  CAS  PubMed  Google Scholar 

  22. Lege BAM, Haigis W. Laser interference biometry versus ultrasound biometry in certain clinical conditions. Graefe’s Archive Clin Exp Ophthalmol. 2004;242:8–12.

    Article  CAS  Google Scholar 

  23. Abou-Shousha M, Helaly HA, Osman IM. The accuracy of axial length measurements in cases of macula-off retinal detachment. Can J Ophthalmol. 2016;51:108–12.

    Article  PubMed  Google Scholar 

  24. Mizushima Y, Kawana K, Suto C, Shimamura E, Fukuyama M, Oshika T. Evaluation of axial length measurement with new partial coherence interferometry. OA-1000. Jpn J Ophthalmol Surg. 2010;23:453–7 (In Japanese).

    Google Scholar 

  25. Eleftheriadis H. IOLMaster biometry: refractive results of 100 consecutive cases. Brit J Ophthalmol. 2003;87:960.

    Article  CAS  Google Scholar 

  26. Rose LT, Moshegov CN. Comparison of the Zeiss IOLMaster and applanation A-scan ultrasound: biometry for intraocular lens calculation. Clin Exp Ophthalmol. 2003;31:121–4.

    Article  PubMed  Google Scholar 

  27. Kang TS, Park HJ, Jo YJ, Kim JY. Long-term reproducibility of axial length after combined phacovitrectomy in macula-sparing rhegmatogenous retinal detachment. Sci Rep. 2018;8:15856.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sakamoto M, Yoshida I, Sodeno T, Sakai A, Masahara H, Maeno T. Postoperative refractive prediction error measured by optical and acoustic biometry after phacovitrectomy for rhegmatogenous retinal detachment without macular involvement. J Ophthalmol. 2019;2019:5964127.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jeoung JW, Chung H, Yu HG. Factors influencing refractive outcomes after combined phacoemulsification and pars plana vitrectomy: results of a prospective study. J Cataract Refract Surg. 2007;33:108–14.

    Article  PubMed  Google Scholar 

  30. Manvikar SR, Allen D, Steel DHW. Optical biometry in combined phacovitrectomy. J Cataract Refract Surg. 2009;35:64–9.

    Article  PubMed  Google Scholar 

  31. Iwase T, Sugiyama K. Investigation of the stability of one-piece acrylic intraocular lenses in cataract surgery and in combined vitrectomy surgery. Brit J Ophthalmol. 2006;90:1519.

    Article  CAS  Google Scholar 

  32. Zhang J, Liu Z, Qiu X, Jin L, Wang L, Jin G, et al. Axial length change in pseudophakic eyes measured by IOLMaster 700. Transl Vis Sci Technol. 2021;10:29.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhei Kimura.

Ethics declarations

Conflicts of interest

S. Kimura, None; M. M. Hosokawa, None; Y. Shiode, None; R. Matoba, None; Y. Kanzaki, None; Y. Goto, None; K. Kanenaga, None; E. Suzuki, None; Y. Morizane, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Shuhei Kimura

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, S., Hosokawa, M.M., Shiode, Y. et al. Accuracy of ultrasound vs. Fourier-domain optic biometry for measuring preoperative axial length in cases of rhegmatogenous retinal detachment. Jpn J Ophthalmol 67, 645–651 (2023). https://doi.org/10.1007/s10384-023-01018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-023-01018-2

Keywords

Navigation