Skip to main content

Advertisement

Log in

Ocular surface flora and prophylactic antibiotics for cataract surgery in the age of antimicrobial resistance

  • Forefront Review
  • Organizer: Annabelle Ayame Okada, MD
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

According to the World Health Organization alert about the antimicrobial resistance crisis released in 2015, clinicians should strongly reconsider the prolonged use of antimicrobials. In this review, we focus on the ocular surface flora with respect to the trend of fluoroquinolone resistance, and its upset and restoration after topical administration of antimicrobials and preservatives. Even 3 weeks of topical administration of levofloxacin (LVFX) yields a selection of fluoroquinolone-resistant isolates bearing genetic changes in the ocular surface flora. One month of topical prophylactic administration of LVFX after cataract surgery induces the loss of diversity with LVFX-resistance of the ocular surface flora. Restoration of LVFX-sensitive flora occurs 6 to 9 months after the final topical administration of LVFX. The ocular surface flora recovers earlier in patients given LVFX for 1 week after the surgical procedure. These findings suggest that shorter periods of postoperative topical antibiotics are less frequently associated with persistent antimicrobial-resistant bacteria in the ocular flora. In addition, microbiologic analysis of ocular surfaces treated with a long period of eye drops containing benzalkonium chloride (BAC) showed a higher incidence of isolates resistant to methicillin and fluoroquinolones than did ocular surfaces treated with eye drops not containing BAC. To avoid the emergence of antimicrobial-resistant bacteria on the ocular surface, an urgent discussion must be held about the appropriate use of antibiotics and preservatives in the ophthalmology field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. World Health Organization. Global action plan on antimicrobial resistance. 2015. https://www.who.int/publications/i/item/global-action-plan-on-antimicrobial-resistance

  2. Japanese Society of Chemotherapy/Japan Society for Surgical Infection. Practical guideline for appropriate use of prophylactic antibiotics to prevent surgical site infection. J Jpn Soc Chemother. 2020;68:309–20 (Article in Japanese).

    Google Scholar 

  3. Kurokawa N, Hayashi K, Konishi M, Yamada M, Noda T, Mashima Y. Increasing ofloxacin resistance of bacterial flora from conjunctival sac of preoperative ophthalmic patients in Japan. Jpn J Ophthalmol. 2002;46:586–9.

    Article  PubMed  Google Scholar 

  4. Eguchi H, Kuwahara T, Miyamoto T, Nakayama-Imaohji H, Ichimura M, Hayashi T, et al. High-level fluoroquinolone resistance in ophthalmic clinical isolates belonging to the species Corynebacterium macginleyi. J Clin Microbiol. 2008;46:527–32.

    Article  CAS  PubMed  Google Scholar 

  5. Matsuura K, Mori T, Miyamoto T, Suto C, Saeki Y, Tanaka S, et al. Survey of Japanese ophthalmic surgeons regarding perioperative disinfection and antibiotic prophylaxis in cataract surgery. Clin Ophthalmol. 2014;8:2013–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hayes JD, Wolf CR. Molecular mechanisms of drug resistance. Biochem J. 1990;272:281–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Putman M, van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev. 2000;64:672–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McMurry LM, Aronson D-A, Levy SB. Susceptible Escherichia coli cells can actively excrete tetracyclines. Antimicrob Agents Chemother. 1983;24:544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McMurry LM, Petrucci RE Jr, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci USA. 1980;77:3974–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goswitz JJ, Willard KE, Fasching CE, Peterson LR. Detection of gyrA mutations associated with ciprofloxacin resistance in methicillin-resistant Staphylococcus aureus: analysis by polymerase chain reaction and automated direct DNA sequencing. Antimicrob Agents Chemother. 1992;36:1166–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamada M, Yoshida J, Hatou S, Yoshida T, Minagawa Y. Mutations in the quinolone resistance determining region in Staphylococcus epidermidis recovered from conjunctiva and their association with susceptibility to various fluoroquinolones. Br J Ophthalmol. 2008;92:848–51.

    Article  CAS  PubMed  Google Scholar 

  12. Sreedharan S, Oram M, Jensen B, Peterson LR, Fisher LM. DNA gyrase gyrA mutations in ciprofloxacin-resistant strains of Staphylococcus aureus: close similarity with quinolone resistance mutations in Escherichia coli. J Bacteriol. 1990;172:7260–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoshida H, Bogaki M, Nakamura S, Ubukata K, Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol. 1990;172:6942–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaatz GW, Seo SM, Ruble CA. Efflux-medicated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1993;37:1086–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ozkan J, Willcox M. The ocular microbiome: molecular characterization of a unique and low microbial environment. Curr Eye Res. 2019;44:685–94.

    Article  CAS  PubMed  Google Scholar 

  16. Locather-Khorazo D, Seegal BC. The bacterial flora of the healthy eye. In: Locather-Khorazo D, Seegal BC, editors. Microbiology of the eye. Maryland Heights: Mosby; 1972. p. 13–23.

    Google Scholar 

  17. Goldstein MH, Kowalski RP, Gordon YJ. Emerging fluoroquinolone resistance in bacterial keratitis: a 5-year-review. Ophthalmology. 1999;106:1213–8.

    Article  Google Scholar 

  18. Bourcier T, Thomas F, Borderie V, Chaumeil C, Laroche L. Bacterial keratitis: predisposing factors, clinical and microbiological review of 300 cases. Br J Ophthalmol. 2003;87:834–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lichitinger A, Yeung SN, Kim P, Amiran MD, Iovienco A, Elbaz U, et al. Shifting trends in bacterial keratitis in Toronto: an 11-year-review. Ophthalmology. 2012;119:1785–90.

    Article  Google Scholar 

  20. Speaker MG, Milch FA, Shah MK, Eisner W, Kreiswirth BN. Role of external bacterial flora in the pathogenesis of acute postoperative endophthalmitis. Ophthalmology. 1991;98:639–49.

    Article  CAS  PubMed  Google Scholar 

  21. Bannerman TL, Rhoden DL, McAllister SK, Miller JM, Wilson LA. The source of coagulase-negative staphylococci in the Endophthalmitis Vitrectomy Study: a comparison of eyelid and intraocular isolates using pulsed-field gel electrophoresis. Ophthalmology. 1997;115:357–61.

    CAS  Google Scholar 

  22. Singer TR, Isenberg SJ, Apt L. Conjunctival anaerobic and aerobic bacterial flora in paediatric versus adult subjects. Br J Ophthalmol. 1988;72:448–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ono T, Nejima R, Iwasaki T, Mori Y, Noguchi Y, Yagi A, et al. Long-term effects of cataract surgery with topical levofloxacin on ocular bacterial flora. J Cataract Refract Surg. 2017;43:1129–34.

    Article  PubMed  Google Scholar 

  24. Matsuura K, Miyazaki D, Sasaki S, Inoue Y, Sasaki Y, Inoue Y, et al. Conjunctival bacterial flora and antimicrobial susceptibility in bacterial pathogens isolated prior to cataract surgery. Jpn J Ophthalmol. 2020;64:423–8.

    Article  CAS  PubMed  Google Scholar 

  25. Noguchi Y, Nejima R, Marume K, Yagi A, Mori Y, Ono T, et al. Annual changes in drug susceptibility of Staphylococcus epidermidis isolated from the conjunctival sac of pre-operative ophthalmological patients. Int J Anal Bio-Sci. 2016;4:92–8.

    Google Scholar 

  26. Ueda K, Nejima R, Ono Y, Noguchi Y, Yagi A, Iwasaki T, et al. Annual trends in antibiotic susceptibility of isolates from bacterial keratitis between 2014–2016. Nippon Ganka Gakkai Zasshi. 2019;123:135–42 (in Japanese).

    Google Scholar 

  27. Ohtani S, Shimizu K, Nejima R, Kagaya F, Aihara M, Iwasaki T, et al. Conjunctival bacterial flora of glaucoma patients during long-term administration of prostaglandin analog drops. Invest Ophthalmol Vis Sci. 2017;58:3991–6.

    Article  CAS  PubMed  Google Scholar 

  28. Lee J, Iwasaki T, Ohtani S, Matsui H, Nejima R, Mori Y, et al. Benzalkonium chloride resistance in Staphylococcus epidermidis on the ocular surface of glaucoma patients under long-term administration of eye drops. Trans Vis Sci Tech. 2020;9:9.

    CAS  Google Scholar 

  29. Miyanaga M, Nejima R, Miyai T, Miyata K, Ohashi Y, Inoue Y, et al. Changes in drug susceptibility and the quinolone-resistance determining region of Staphylococcus epidermidis after administration of fluoroquinolones. J Cataract Refract Surg. 2009;35:1970–8.

    Article  PubMed  Google Scholar 

  30. Colin J, Simonpoli S, Geldsetzer K, Ropo A. Corneal penetration of levofloxacin into the human aqueous humour: a comparison with ciprofloxacin. Acta Ophthalmol Scand. 2003;81:611–3.

    Article  CAS  PubMed  Google Scholar 

  31. Koch HR, Kulus SC, Roessler M, Ropo A, Geldsetzer K. Corneal penetration of fluoroquinolones: aqueous humor concentrations after topical application of levofloxacin 0.5% and ofloxacin 0.3% eyedrops. J Cataract Refract Surg. 2005;31:1377–85.

    Article  PubMed  Google Scholar 

  32. Nejima R, Shimizu K, Ono T, Noguchi Y, Yagi A, Iwasaki T, et al. Effect of the administration period of perioperative topical levofloxacin on normal conjunctival bacterial flora. J Cataract Refract Surg. 2017;43:42–8.

    Article  PubMed  Google Scholar 

  33. Inoue T, Uno T, Usui N, Kobayakawa S, Ichihara K, Ohashi Y, et al. Incidence of endophthalmitis and the perioperative practices of cataract surgery in Japan: Japanese Prospective Multicenter Study for Postoperative endophthalmitis after Cataract Surgery. Jpn J Ophthalmol. 2018;62:24–30.

    Article  PubMed  Google Scholar 

  34. Pershing S, Lum F, Hsu S, Kelly S, Chiang MF, Rich WL III, et al. Endophthalmitis after cataract surgery in the United States: a report from the Intelligent Research in Sight Registry, 2013–2017. Ophthalmology. 2020;127:151–8.

    Article  PubMed  Google Scholar 

  35. Behndig A, Cochener B, Guell JL, Kodjikian L, Mencucci R, Nuijts RMMA, et al. Endophthalmitis prophylaxis in cataract surgery: overview of current practice patterns in 9 European countries. Cataract Refract Surg. 2013;39:1421–31.

    Article  Google Scholar 

  36. Barry P, Cordoves L, Gardner S. ESCRS guidelines for prevention and treatment of endophthalmitis following cataract surgery: data, dilemmas and conclusions. Amsterdam: ESCRS; 2013.

    Google Scholar 

  37. Lalwani GA, Flynn HW Jr, Scott IU, Quinn CM, Berrocal AM, Davis JL, et al. Acute onset endophthalmitis after clear corneal surgery (1996–2005): clinical features, causative organisms, and visual outcomes. Ophthalmology. 2008;115:473–6.

    Article  PubMed  Google Scholar 

  38. Shirodkar AR, Pathengay A, Flynn HW Jr, Albini TA, Berrocal AM, Davis JL, et al. Delayed versus acute onset endophthalmitis after cataract surgery. Am J Ophthalmol. 2012;153:391–8.

    Article  PubMed  Google Scholar 

  39. Han DP, Wisniewski SR, Wilson LA, Barza M, Vine AK, Doft BH, et al. Spectrum and susceptibilities of microbiologic isolates in the Endophthalmitis Vitrectomy Study. Am J Ophthalmol. 1996;122:1–17.

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki T, Todokoro D, Kobayakawa S, Sotozono C, Eguchi S, Miyata K, et al. Postcataract endophthalmitis caused by Enterococcus faecalis. Nippon Ganka Gakkai Zasshi. 2014;118:22–7 (in Japanese).

    PubMed  Google Scholar 

  41. World Health Organization. Global guidelines on the prevention of surgical site infection. 2016. who.int/gpsc/ssi-prevention-guidelines/en/.

  42. CDC Guideline for Prevention of Surgical Site Infection. 2017. https://www.cdc.gov/infectioncontrol/guidelines/ssi/index.html.

  43. Ciulla TA, Starr MB, Masket S. Bacterial endophthalmitis prophylaxis for cataract surgery: an evidence-based update. Ophthalmology. 2002;109:13–26.

    Article  PubMed  Google Scholar 

  44. Inoue Y, Usui M, Ohashi Y, Shiota H, Yamazaki T, Preoperative Disinfection Study Group. Preoperative disinfection of the conjunctival sac with antibiotics and iodine compounds: a prospective randomized multicenter study. Jpn J Ophthalmol. 2008;52:151–61.

    Article  CAS  PubMed  Google Scholar 

  45. Matsuura K, Miyazaki D, Sasaki S, Inoue Y, Sasaki Y, Shimizu Y. Effectiveness of intraoperative iodine in cataract surgery: cleanliness of the surgical field without preoperative topical antibiotics. Jpn J Ophthalmol. 2020;64:37–44.

    Article  CAS  PubMed  Google Scholar 

  46. ESCRS Endophthalmitis Study Group. Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J Cataract Refract Surg. 2007;33:978–88.

    Article  Google Scholar 

  47. Shorstein NH, Winthrop KL, Herrinton LJ. Decreased postoperative endophthalmitis rate after institution of intracameral antibiotics in a Northern California eye department. J Cataract Refract Surg. 2013;39:8–14.

    Article  PubMed  Google Scholar 

  48. Matsuura K, Miyoshi T, Suto C, Akura J, Inoue Y. Efficacy and safety of prophylactic intracameral moxifloxacin injection in Japan. J Cataract Refract Surg. 2013;39:1702–6.

    Article  PubMed  Google Scholar 

  49. Haripyriya A, Chang DF, Ravindran RD. Endophthalmitis reduction with intracameral moxifloxacin prophylaxis: analysis of 600 000 surgeries. Ophthalmology. 2017;124:768–75.

    Article  Google Scholar 

  50. O’Brien TP, Arshinoff SA, Mah FS. Perspectives on antibiotics for postoperative endophthalmitis prophylaxis: potential role of moxifloxacin. J Cataract Refract Surg. 2007;33:1790–800.

    Article  PubMed  Google Scholar 

  51. Matsuura K, Suto C, Akura J, Inoue Y. Comparison between intracameral moxifloxacin administration methods by assessing intraocular concentrations and drug kinetics. Graefe’s Arch Clin Exp Ophthalmol. 2013;251:1955–9.

    Article  CAS  Google Scholar 

  52. Shorstein NH, Gardner S, Pharm D. Injection volume and intracameral moxifloxacin dose. J Cataract Refract Surg. 2019;45:1498–502.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chang DF, Braga-Mele R, Henderson BA, Mamalis N, Vasavada A. Antibiotic prophylaxis of postoperative endophthalmitis after cataract surgery: results of the 2014 ASCRS member survey. J Cataract Refract Surg. 2015;41:1300–5.

    Article  PubMed  Google Scholar 

  54. Matsuura K, Mori T, Suto C, Saeki Y, Tanaka S, Kawamura H, et al. Survey of Japanese ophthalmic surgeons regarding perioperative disinfection and antibiotic prophylaxis in cataract surgery. Clin Ophthalmol. 2014;8:2013–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was based on studies performed at Miyata Eye Hospital. We thank all the members of the hospital staff involved in these studies, especially those who carried out the microbiologic analyses: Y. Noguchi and A. Yagi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Iwasaki.

Ethics declarations

Conflicts of interest

T. Iwasaki, Lecture fee (Santen); R. Nejima, Lecture fee (Novartis, Santen, Senju, HOYA, Kowa); K. Miyata, Grant, Lecture fee (AMO, Alcon, Senju, HOYA, Kowa, Beaver-Visitec International Japan, AbbVie), Grant (Wakamoto, SEED, M’s Science), Lecture fee (Santen, JFC Sales Plan, Cuore, Bayer, Novartis), Patent pending (TOMEY).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Organizer: Annabelle Ayame Okada, MD

Corresponding Author: Takuya Iwasaki

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasaki, T., Nejima, R. & Miyata, K. Ocular surface flora and prophylactic antibiotics for cataract surgery in the age of antimicrobial resistance. Jpn J Ophthalmol 66, 111–118 (2022). https://doi.org/10.1007/s10384-021-00899-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-021-00899-5

Keywords

Navigation