Skip to main content

Advertisement

Log in

Conjunctival bacterial flora and antimicrobial susceptibility in bacterial pathogens isolated prior to cataract surgery

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To optimize prophylactic antibiotic administration, antibiotic susceptibility before cataract surgery was investigated using ocular bacteria isolated preoperatively.

Design

Retrospective cross-sectional study.

Methods

In 204 eyes of 102 patients who underwent routine bilateral cataract surgery, conjunctival sac scrapings were collected 1–2 weeks before surgery. A total of 192 major pathogens among the 470 isolated bacteria were subjected to susceptibility testing. The major pathogens included Staphylococcus aureus, Staphylococcus epidermidis, coagulase-negative staphylococci (CNS) other than S. epidermidis, Enterococcus faecalis, and Streptococcus spp. The following antibiotics were tested: cefmenoxime (CMX), ceftazidime (CAZ), tobramycin (TOB), vancomycin (VAN), erythromycin (EM), moxifloxacin (MFLX), gatifloxacin (GFLX), levofloxacin (LVFX), chloramphenicol (CP), and imipenem (IP).

Results

The proportions of isolates with minimum inhibitory concentration (MIC) of S. epidermidis (N = 82), exceeding 4 μg/ml were high for CAZ (95.1%), EM (32.9%), LVFX (39.0%), and CP (82.9%).

Susceptible (S) proportion was high for CMX (98.8%), VAN (100%), CP (93.9%), and IP (97.6%) but relatively low for MFLX (59.8%), GFLX (54.9%), and LVFX (54.9%). The MIC90 values were high for CMX (16 μg/ml), CAZ (64 μg/ml), TOB (32 μg/ml), EM (128 μg/ml), LVFX (16 μg/ml), and CP (8 μg/ml). The MIC of quinolonesof

pathogenic bacteria other than S.epidermidis (N = 108), exceeded 4 μg/ml for 11 isolates, including two Methicillin-resistant Staphylococcus aureus.

Conclusions

The increase in resistance of resident bacteria present in the conjunctival sac to antibiotics indicates that systemic and topical antibiotics are no longer effective, especially against external organisms affecting the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MIC:

Minimum inhibitory concentration

CNS:

Staphylococcus epidermidis, Coagulase-negative staphylococci

CLSI:

Clinical and Laboratory Standards Institute

CMX:

Cefmenoxime

CAZ:

Ceftazidime

TOB:

Tobramycin

VAN:

Vancomycin

EM:

Erythromycin

MFLX:

Moxifloxacin

GFLX:

Gatifloxacin

LVFX:

Levofloxacin

CP:

Chloramphenicol

IP:

Imipenem

References

  1. Speaker MG, Milch FA, Shah MK, Eisner W, Kreiswirth BN. Role of external bacterial flora in the pathogenesis of acute postoperative endophthalmitis. Ophthalmology. 1991;98:639–49 (discussion 50).

  2. Slean GR, Shorstein NH, Liu L, Paschal JF, Winthrop KL, Herrinton LJ. Pathogens and antibiotic sensitivities in endophthalmitis. Clin Exp Ophthalmol. 2017;45:481–8.

    Article  Google Scholar 

  3. Mendelson M, Matsoso MP. The World Health Organization Global Action Plan for antimicrobial resistance. S Afr Med J (Suid-Afrikaanse Tydskrif vir Geneeskunde). 2015;105:325.

  4. Matsuura K, Miyazaki D, Sasaki SI, Inoue Y, Sasaki Y, Shimizu Y. Effectiveness of intraoperative iodine in cataract surgery: cleanliness of the surgical field without preoperative topical antibiotics. Jpn J Ophthalmol. 2020;64:37–44.

    Article  CAS  Google Scholar 

  5. Ono T, Nejima R, Iwasaki T, Mori Y, Noguchi Y, Yagi A, et al. Long-term effects of cataract surgery with topical levofloxacin on ocular bacterial flora. J Cataract Refract Surg. 2017;43:1129–34.

    Article  Google Scholar 

  6. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard-eighth edition. 2009; CLSI: M07-A8.

  7. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: nineteenth informational supplement. 2013; CLSI: M100-S23.

  8. Stringham JD, Relhan N, Miller D, Flynn HW Jr. Trends in fluoroquinolone nonsusceptibility among coagulase-negative Staphylococcus isolates causing endophthalmitis, 1995–2016. JAMA Ophthalmol. 2017;135:814–5.

    Article  Google Scholar 

  9. Park SH, Lim JA, Choi JS, Kim KA, Joo CK. The resistance patterns of normal ocular bacterial flora to 4 fluoroquinolone antibiotics. Cornea. 2009;28:68–72.

    Article  Google Scholar 

  10. Nejima R, Shimizu K, Ono T, Noguchi Y, Yagi A, Iwasaki T, et al. Effect of the administration period of perioperative topical levofloxacin on normal conjunctival bacterial flora. J Cataract Refract Surg. 2017;43:42–8.

    Article  Google Scholar 

  11. Colin J, Simonpoli S, Geldsetzer K, Ropo A. Corneal penetration of levofloxacin into the human aqueous humour: a comparison with ciprofloxacin. Acta Ophthalmol Scand. 2003;81:611–3.

    Article  CAS  Google Scholar 

  12. Teshigawara T, Hata S, Hayashi T, Watanabe Y, Itoh Y, Hitoi K, et al. Penetration of gatifloxacin eye drops into the aqueous humor in humans. Ocul Immunol Inflamm. 2007;15:309–13.

    Article  CAS  Google Scholar 

  13. Hariprasad SM, Blinder KJ, Shah GK, Apte RS, Rosenblatt B, Holekamp NM et al. Penetration pharmacokinetics of topically administered 0.5% moxifloxacin ophthalmic solution in human aqueous and vitreous. Arch Ophthalmol. 2005;123:39–44.

  14. Hariprasad SM, Shah GK, Mieler WF, Feiner L, Blinder KJ, Holekamp NM, et al. Vitreous and aqueous penetration of orally administered moxifloxacin in humans. Arch Ophthalmol. 2006;124:178–82.

    Article  CAS  Google Scholar 

  15. George JM, Fiscella R, Blair M, Rodvold K, Ulanski L, Stokes J, et al. Aqueous and vitreous penetration of linezolid and levofloxacin after oral administration. J Ocul Pharmacol Ther. 2010;26:579–86.

    Article  CAS  Google Scholar 

  16. Inoue Y, Usui M, Ohashi Y, Shiota H, Yamazaki T; Preoperative Disinfection Study G. Preoperative disinfection of the conjunctival sac with antibiotics and iodine compounds: a prospective randomized multicenter study. Jpn J Ophthalmol. 2008;52:151–61.

  17. Mochizuki K, Yamashita Y, Torisaki M, Komatsu M, Tanahashi T, Kawasaki K. Intraocular kinetics of ceftazidime (Modacin). Ophthalmic Res. 1992;24:150–4.

    Article  CAS  Google Scholar 

  18. Axelrod JL, Kochman RS, Horowitz MA, Youngworth L. Ceftazidime concentrations in human aqueous humor. Arch Ophthalmol. 1984;102:923–5.

    Article  CAS  Google Scholar 

  19. Aubert G, Carricajo A, Coudrot M, Guyomarc'h S, Auboyer C, Zeni F. Prospective determination of serum ceftazidime concentrations in intensive care units. Ther Drug Monit. 2010;32:517–9.

    Article  CAS  Google Scholar 

  20. Sistanizad M, Kouchek M, Miri M, Goharani R, Solouki M, Ayazkhoo L, et al. Carbapenem restriction and its effect on bacterial resistance in an intensive care unit of a teaching hospital. Iran J Pharm Res IJPR. 2013;12:503–9.

    CAS  PubMed  Google Scholar 

  21. Witkin AJ, Chang DF, Jumper JM, Charles S, Eliott D, Hoffman RS, et al. Vancomycin-associated hemorrhagic occlusive retinal vasculitis: clinical characteristics of 36 eyes. Ophthalmology. 2017;124:583–95.

    Article  Google Scholar 

  22. Matsuura K, Suto C, Akura J, Inoue Y. Bag and chamber flushing: a new method of using intracameral moxifloxacin to irrigate the anterior chamber and the area behind the intraocular lens. Graefes Arch Clin Exp Ophthalmol. 2013;251:81–7.

    Article  CAS  Google Scholar 

  23. Shimada H, Arai S, Nakashizuka H, Hattori T, Yuzawa M. Reduction of anterior chamber contamination rate after cataract surgery by intraoperative surface irrigation with 0.25% povidone-iodine. Am J Ophthalmol. 2011;151:11–7 e1.

  24. Yin VT, Weisbrod DJ, Eng KT, Schwartz C, Kohly R, Mandelcorn E, et al. Antibiotic resistance of ocular surface flora with repeated use of a topical antibiotic after intravitreal injection. JAMA Ophthalmol. 2013;131:456–61.

    Article  CAS  Google Scholar 

  25. Michelle EW, Adrienne WS. How to give intravitreal injections. 2013. https://www.aao.org/eyenet/article/how-to-give-intravitreal-injections. Accessed Apr 2013.

Download references

Acknowledgements

K. Matsuura, Grants-in-Aid for Scientific Research S.S., 15K20261 (Ministry of Education, Culture, Sports, Science and Technology of Japan); Y. Inoue, Lecture fee (Japanese Ophthalmological Society).

Author information

Authors and Affiliations

Authors

Contributions

All authors were responsible for the design of the study. KM and YS collected the data. All authors participated in the analysis and interpretation of data. KM and YI drafted and critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kazuki Matsuura.

Ethics declarations

Conflicts of interest

K. Matsuura, None; D. Miyazaki, None; S. Sasaki, None; Y. Inoue, Consultant fee (Senju), Grant (Santen, Alcon); Y. Sasaki, None; Y. Shimizu, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Kazuki Matsuura

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuura, K., Miyazaki, D., Sasaki, Si. et al. Conjunctival bacterial flora and antimicrobial susceptibility in bacterial pathogens isolated prior to cataract surgery. Jpn J Ophthalmol 64, 423–428 (2020). https://doi.org/10.1007/s10384-020-00746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-020-00746-z

Keywords

Navigation